


Foreword

ETAPS 2007 is the tenth instance of the European Joint Conferences on Theory
and Practice of Software, and thus a cause for celebration.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

History and Prehistory of ETAPS

ETAPS as we know it is an annual federated conference that was established
in 1998 by combining five conferences [Compiler Construction (CC), European
Symposium on Programming (ESOP), Fundamental Approaches to Software En-
gineering (FASE), Foundations of Software Science and Computation Structures
(FOSSACS), Tools and Algorithms for Construction and Analysis of Systems
(TACAS)] with satellite events.

All five conferences had previously existed in some form and in various colo-
cated combinations: accordingly, the prehistory of ETAPS is complex. FOSSACS
was earlier known as the Colloquium on Trees in Algebra and Programming
(CAAP), being renamed for inclusion in ETAPS as its historical name no longer
reflected its contents. Indeed CAAP’s history goes back a long way; prior to
1981, it was known as the Colleque de Lille sur les Arbres en Algebre et en
Programmation. FASE was the indirect successor of a 1985 event known as Col-
loquium on Software Engineering (CSE), which together with CAAP formed a
joint event called TAPSOFT in odd-numbered years. Instances of TAPSOFT, all
including CAAP plus at least one software engineering event, took place every
two years from 1985 to 1997 inclusive. In the alternate years, CAAP took place
separately from TAPSOFT.

Meanwhile, ESOP and CC were each taking place every two years from 1986.
From 1988, CAAP was colocated with ESOP in even years. In 1994, CC became
a “conference” rather than a “workshop” and CAAP, CC and ESOP were there-
after all colocated in even years.

TACAS, the youngest of the ETAPS conferences, was founded as an inter-
national workshop in 1995; in its first year, it was colocated with TAPSOFT. It
took place each year, and became a “conference” when it formed part of ETAPS
1998. It is a telling indication of the importance of tools in the modern field of
informatics that TACAS today is the largest of the ETAPS conferences.
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The coming together of these five conferences was due to the vision of a small
group of people who saw the potential of a combined event to be more than the
sum of its parts. Under the leadership of Don Sannella, who became the first
ETAPS steering committee chair, they included: Andre Arnold, Egidio Aste-
siano, Hartmut Ehrig, Peter Fritzson, Marie-Claude Gaudel, Tibor Gyimothy,
Paul Klint, Kim Guldstrand Larsen, Peter Mosses, Alan Mycroft, Hanne Riis
Nielson, Maurice Nivat, Fernando Orejas, Bernhard Steffen, Wolfgang Thomas
and (alphabetically last but in fact one of the ringleaders) Reinhard Wilhelm.

ETAPS today is a loose confederation in which each event retains its own
identity, with a separate programme committee and proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “uni-
fying” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 1998–2006

The first ETAPS took place in Lisbon in 1998. Subsequently it visited Ams-
terdam, Berlin, Genova, Grenoble, Warsaw, Barcelona, Edinburgh and Vienna
before arriving in Braga this year. During that time it has become established
as the major conference in its field, attracting participants and authors from
all over the world. The number of submissions has more than doubled, and the
numbers of satellite events and attendees have also increased dramatically.

ETAPS 2007

ETAPS 2007 comprises five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
18 satellite workshops (ACCAT, AVIS, Bytecode, COCV, FESCA, FinCo, GT-
VMT, HAV, HFL, LDTA, MBT, MOMPES, OpenCert, QAPL, SC, SLA++P,
TERMGRAPH and WITS), three tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received around 630
submissions to the five conferences this year, giving an overall acceptance rate of
25%. To accommodate the unprecedented quantity and quality of submissions,
we have four-way parallelism between the main conferences on Wednesday for
the first time. Congratulations to all the authors who made it to the final pro-
gramme! I hope that most of the other authors still found a way of participating
in this exciting event and I hope you will continue submitting.

ETAPS 2007 was organized by the Departamento de Informática of the Uni-
versidade do Minho, in cooperation with
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– European Association for Theoretical Computer Science (EATCS)
– European Association for Programming Languages and Systems (EAPLS)
– European Association of Software Science and Technology (EASST)
– The Computer Science and Technology Center (CCTC, Universidade do

Minho)
– Camara Municipal de Braga
– CeSIUM/GEMCC (Student Groups)

The organizing team comprised:

– João Saraiva (Chair)
– José Bacelar Almeida (Web site)
– José João Almeida (Publicity)
– Lúıs Soares Barbosa (Satellite Events, Finances)
– Victor Francisco Fonte (Web site)
– Pedro Henriques (Local Arrangements)
– José Nuno Oliveira (Industrial Liaison)
– Jorge Sousa Pinto (Publicity)
– António Nestor Ribeiro (Fundraising)
– Joost Visser (Satellite Events)

ETAPS 2007 received generous sponsorship from Fundação para a Ciência e a
Tecnologia (FCT), Enabler (a Wipro Company), Cisco and TAP Air Portugal.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Roberto Amadio (Paris), Luciano Baresi
(Milan), Sophia Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Chris Hankin (London), Laurie Hendren
(McGill), Mike Hinchey (NASA Goddard), Michael Huth (London), Anna Ingólfs-
dóttir (Aalborg), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Jakob Rehof (Dortmund), Don Sannella (Edin-
burgh), João Saraiva (Minho), Vladimiro Sassone (Southampton), Helmut Seidl
(Munich), Daniel Varro (Budapest), Andreas Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizing chair of ETAPS 2007, João Saraiva,
for arranging for us to have ETAPS in the ancient city of Braga.

Edinburgh, January 2007 Perdita Stevens
ETAPS Steering Committee Chair



Preface

The present volume contains the proceedings of the international conference
Foundations of Software Science and Computations Structures (FOSSACS) 2007,
held in Braga, Portugal, March 26-28, 2007. FOSSACS is an event of the Joint
European Conferences on Theory and Practice of Software (ETAPS). The previ-
ous nine FOSSACS conferences took place in Lisbon (1998), Amsterdam (1999),
Berlin (2000), Genoa (2001), Grenoble (2002), Warsaw (2003), Barcelona (2004),
Edinburgh (2005) and Vienna (2006).

FOSSACS presents original papers on foundational research with a clear sig-
nificance to software science. The Program Committee invited papers on theories
and methods to support analysis, synthesis, transformation and verification of
programs and software systems. We identified the following topics, in particu-
lar: algebraic models, automata and language theory, behavioral equivalences,
categorical models, computation processes over discrete and continuous data,
infinite state systems computation structures, logics of programs, modal, spa-
tial, and temporal logics, models of concurrent, reactive, distributed, and mobile
systems, process algebras and calculi, semantics of programming languages, soft-
ware specification and refinement, type systems and type theory, fundamentals
of security, semi-structured data, program correctness and verification. We ulti-
mately received 103 submissions.

This proceedings volume consists of the abstract of our invited talk together
with 25 contributed papers. The contributed papers were selected for publication
by the Program Committee during a two-week electronic discussion.

I sincerely thank all the authors of papers submitted to FOSSACS 2007. We
were pleased by the number and quality of the submissions. Moreover, I would
like to thank the members of the Program Committee for the excellent job they
did during the selection process. Clearly, all this would not have been possible
without the valuable and detailed reports provided by the sub-reviewers.

To administer submission and evaluation of papers, we relied on the Web-
based tool OCS from Dortmund; thanks to Martin Karusseit for his patience
and immediate help in cases of emergency. Finally, I would also like to thank the
ETAPS 2007 Organizing Committee chaired by João Alexandre Saraiva and the
ETAPS Steering Committee for their efficient coordination of all the activities
leading up to FOSSACS 2007.

January 2007 Helmut Seidl
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Jérôme Feret
Emmanuel Filiot
Marcelo Fiore
Vojtech Forejt
Julien Forest
Joern Freiheit
Rudolf Freund
Murdoch Gabbay
Blaise Genest
Konstantinos Georgatos
Jeremy Gibbons
Jürgen Giesl
Hugo Gimbert
Jens C. Godskesen
Massimilian Goldwurm
Annegret Habel
Peter Habermehl
Sebastian Hack
Jo Hannay
Masahito Hasegawa
Ichiro Hasuo
Thomas Hildebrandt

Jane Hillston
Daniel Hirschkoff
Markus Holzer
Kohei Honda
Matthias Horbach
Hans Hüttel
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Formal Foundations for Aspects

Radha Jagadeesan

DePaul University, USA
rjagadeesan@cs.depaul.edu

Abstract. Aspects have emerged as a powerful tool in the design and
development of systems. Aspect-orientation ideas are paradigm indepen-
dent and have been developed for object-oriented, imperative and func-
tional languages.

This talk will discuss a suite of results that aim to level the founda-
tional playing field between aspects and other programming paradigms.
In this context, we will argue that aspects are no more intractable than
stateful higher order programs.

The talk is based on joint work with Glenn Bruns, Alan Jeffrey, Corin
Pitcher and James Riely.

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Sampled Universality of Timed Automata

Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi

Uppsala University, Sweden
{parosh,pavelk,yi}@it.uu.se

Abstract. Timed automata can be studied in not only a dense-time
setting but also a discrete-time setting. The most common example of
discrete-time semantics is the so called sampled semantics (i.e., discrete
semantics with a fixed time granularity ε). In the real-time setting, the
universality problem is known to be undecidable for timed automata. In
this work, we study the universality question for the languages accepted
by timed automata with sampled semantics. On the negative side, we
show that deciding whether for all sampling periods ε a timed automa-
ton accepts all timed words in ε-sampled semantics is as hard as in
the real-time case, i.e., undecidable. On the positive side, we show that
checking whether there is a sampling period such that a timed automaton
accepts all untimed words in ε-sampled semantics is decidable. Our proof
uses clock difference relations, developed to characterize the reachability
relation for timed automata in connection with sampled semantics.

1 Introduction

Timed automata [3] are considered as one of the standard models for timed
systems. The semantics of these models can be defined over various time domains.
The most common one is the set of nonnegative real numbers, giving dense time
semantics. The dense time semantics allows for the description of how a system
behaves at every real-valued time point with arbitrarily fine precision, and thus
one needs not consider time granularity in modeling and verification. To study
systems which have a fixed granularity of time (e.g., clock cycles), discrete time
semantics, and in particular, sampled semantics with fixed time step ε are often
considered, e.g., [10, 5]. In such a case, the time domain is {k · ε|k ∈ N0}, where
ε = 1/n for some n ∈ N.

In this paper, we study the universality question for the languages accepted
by timed automata in sampled semantics. Let A be a timed automaton and
Lε(A) denote the sampled language accepted by A in the ε-sampled semantics,
i.e., the set of timed traces where all events are associated with a timestamp
which is n ∗ ε for some natural number n. More precisely we study the following
problems:

1. Existential timed universality which is to check whether Lε(A) is universal
for some sampling period ε.

2. Universal timed universality which is to check whether Lε(A) is universal
for all sampling periods ε.

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 2–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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3. Existential untimed universality which is to check whether the untimed lan-
guage of Lε(A) is universal for some sampling period ε.

4. Universal untimed universality which is to check whether the untimed lan-
guage of Lε(A) is universal for all sampling periods ε.

We show that Problem 1 and 4 are easy to check. In fact, they are equivalent to
checking whether L1(A) is timed (and untimed) universal (in the sampled seman-
tics with sampling period 1). As our main results, we prove the (un)decidability
of the remaining two questions for both finite and infinite words. On the negative
side, we show that Problem 2 is as hard as the universality problem of timed
automata in the real-time setting, that is undecidable (in fact, Π1

1 -hard). On the
positive side, we show that Problem 3 is decidable.

The decidability proof extends the standard subset construction technique by
a novel procedure for detection of loops which enforce nonimplementable be-
haviors, i.e., behaviors which cannot be realized by a system whenever we fix
a sampling period. This procedure is based on a recently described technique –
clock difference relations [12]. This technique has been developed in connection
with sampled semantics to characterize the reachability relation for timed au-
tomata. It can be used to detect behaviors of timed automata in the dense time
semantics which are not present in a sampled semantics for any sampling period.

Related Work. Universality of timed automata has been shown Π1
1 -hard in

the seminal paper [3] for the real time semantics. Later papers study the uni-
versality (or the language inclusion) problem for subclasses of timed automata,
e.g., closed/open timed automata [16], robust automata [11], or timed automata
with one clock [17, 1]. There has been a considerable amount of work related
to discretization issues and verifying dense time properties using discrete time
methods, e.g., [10, 13, 15, 5]. The main difference compared to our work is that
usually only a fixed sampling rate is considered. Practical aspects of verification
with the use of sampled semantics are discussed in [7, 6, 4]. These works are con-
cerned mainly with data structures for representing sets of discrete valuations
(e.g., different types of decision diagrams). Implementability issues are discussed
in connection with robust semantics of timed automata in [19, 18]. The reach-
ability relations for timed automata were also characterized using the additive
theory of real numbers in [8] and using 2n-automata in [9].

2 Preliminaries

We consider the standard model of timed automata [3].

Definition 1. A timed automaton A is a tuple 〈C, Σ,N, l0, E, F 〉 where

– C is a set of real-valued clocks,
– Σ is a finite alphabet of events,
– N is a finite set of locations,
– l0 ∈ N is the initial location,
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– E ⊆ N×Φ(C)×Σ×2C×N is the set of edges (describing possible transitions),
and

– F ⊆ N is the set of accepting locations.

The set Φ(C) of clock constraints (guards) g is defined as a set of conjunctive
formulas of atomic constraints in the form x ∼ m where x ∈ C is a clock,
∼ ∈ {≤, <,≥, >}, and m is a natural number. A clock valuation ν ∈ [C → R≥0]
is a function mapping clocks to non-negative real numbers. We use ν+t to denote
the clock valuation which maps each clock x to the value ν(x) + t, and ν[r �→ 0]
for r ⊆ C to denote the clock valuation which maps each clock in r to 0 and
agrees with ν for the other clocks (i.e., C\r). An edge (l1, g, e, r, l2) represents a
transition from location l1 ∈ N to location l2 ∈ N accepting an input symbol
(an event) e ∈ Σ, and resetting clocks in r ⊆ C to zero. The transition can be
performed only if the current values of clocks satisfy g.

We present the definition of runs, accepting runs, and the language of timed
automaton relative to a time domain on which the automaton operates. A time
domain T is a subset of nonnegative real numbers satisfying the following prop-
erties. If a, b ∈ T then a+ b ∈ T and 0 ∈ T . If we take T = R≥0 then we get the
standard semantics of timed automata. A T -timed event is a pair (t, e), where
e ∈ Σ is an event and t ∈ T is called a timestamp of the event e. A T -timed trace
is a (possibly infinite) sequence of T -timed events ξ= (t1, e1)(t2, e2)..., ei ∈ Σ,
ti ∈ T and ti ≤ ti+1 for all i ≥ 1.

Definition 2. A run of a timed automaton A = 〈C, Σ,N, l0, E, F 〉 over a T -
timed trace ξ = (t1, e1)(t2, e2)(t3, e3) . . . , is a (possibly infinite) sequence of the
form

(l0, ν0) e1−→
t1

(l1, ν1) e2−→
t2

(l2, ν2) e3−→
t3

. . .

where (li, νi) are states of A, li ∈ N , νi is a clock valuation, satisfying the
following conditions:

– ν0(x) = 0 for all x ∈ C.
– for all i ≥ 1, there is an edge (li−1, gi, ei, ri, li) such that (νi−1 + ti − ti−1)

satisfies gi (we define t0 = 0) and νi = (νi−1 + ti − ti−1)[ri �→ 0].

A finite run of a timed automaton is accepting if ln ∈ F for its last state (ln, νn).
An infinite run of a timed automaton is accepting if an accepting location l ∈ F
occurs on it infinitely often (standard Büchi acceptance condition). The (finite
word) timed language of a timed automaton A with respect to the time domain
T , denoted LT (A), is the set of all finite T -time traces for which there is an
accepting run of A. Analogously, the timed ω-language of a timed automaton
A with respect to the time domain T denoted LωT (A) is the set of all infinite
T -time traces for which there is an accepting run of A.

An untime function U maps a timed trace into a word over Σ by projecting
out the timestamps, i.e., U((t1, e1)(t2, e2)(t3, e3) . . . ) = e1e2e3 . . . . A natural
extension of U to sets of timed traces maps timed languages into their untimed
counterparts.
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a

a

a

a

ay = 1y := 0

x := 01 > y, x > 1

Fig. 1. An example of an automaton which is untimed universal in the real time se-
mantics, but there is no ε such that it is untimed universal in the ε-sampled semantics

We say that languages LT (A), LωT (A) are timed universal if they contain all
finite, resp. infinite, T -timed traces over Σ and T . The languages LT (A), LωT (A)
are untimed universal if U(LT (A)) = Σ∗, U(LωT (A)) = Σω, respectively.

The time domains of special interest in this paper are the sampled (digital)
time domains Tε = {k · ε|k ∈ N0}, where ε is a sampling period, ε = 1/n
for some n ∈ N. To simplify the notation, we write Lε(A), Lωε (A) instead of
LTε(A), LωTε

(A), respectively. In the following, we always assume that ε = 1/n
for some n ∈ N. We will also write L(A), Lω(A) when T = R≥0 (standard real
time semantics). Figure 1 shows an automaton A such that L(A) is untimed
universal, but there is no ε such that Lε(A) is also untimed universal. For any
ε, there is k ∈ N such that the word a2k does not belong to U(Lε(A)).

For a timed automaton A = 〈C, Σ,N, l0, E, F 〉 we will use the standard notion
of region automaton [3]. States of a region automaton consist of a location and
a region. A region is a set of valuations (an equivalence class of so called region
equivalence). These sets can be represented in a finite way, because the region
equivalence has finite index for each timed automaton. Regions are denoted by
D,D′, . . . . Transitions in a region automaton (l, D) a�→ (l′, D′) or (l, D) t�→ (l′, D′)
are labeled by either an a ∈ Σ or by a special symbol t denoting an immediate
time successor (a time delay). In the following, we denote states of the region
automaton by R,R1, R2, . . . and the initial state of the region automaton by
R0. By a path π in the region automaton starting from R and leading to R′

labeled by w (denoted π = R
w−→ R′) we mean a sequence of transitions starting

from R and leading to R′ labeled by w′ such that w = w′ � t (w is equal to
w′ with all labels t projected out) and the last letter of w′ is different from t
(the last transition of the path is labeled by some a ∈ Σ). Note that a path
does not have to be uniquely determined by R,R′ and w. Paths are denoted by
π, π′, π̄, . . .

When we say that there is a run of a timed automaton A over a path π =
R

w−→ R′ in an ε-sampled semantics (real time semantics) then we mean that
there is a run of A over ξw where ξw is a Tε-timed trace (R≥0-timed trace) such
that w = U(ξw) going through π. If we need to specify the starting and the
finishing state, then we write (l, ν) −→π

ε (l′, ν′) or (l, ν) −→π (l′, ν′).
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3 Reachability Relations

As a technical tool in our proofs, we will use clock difference relations [12]
to characterize reachability relations. The notion of the reachability relation
describes exactly the valuations which can be reached in a timed automaton
A from a given valuation while going through a given path in the region au-
tomaton for A. Let π = (l, D) w−→ (l′, D′) be a path in the region automaton
for A. We want to characterize which concrete states (l′, ν′), ν′ ∈ D′ can be
reached from a concrete state (l, ν), ν ∈ D by a run of A going through π in
the real time semantics. We are not interested in the clock values when they
grow over the greatest constant in A, denoted by K. To abstract from such
clocks, we define a relation ∼K on clock valuations as follows: ν ∼K ν′ iff for all
x ∈ C : ν(x) = ν′(x) or ν(x) > K∧ν′(x) > K. Formally, the reachability relation
of a path π = (l, D) w−→ (l′, D′) is a relation on valuations Cπ ⊆ D ×D′ such
that for each ν ∈ D, ν′ ∈ D′:

(ν, ν′) ∈ Cπ ⇐⇒ ∃ν′′ ∼K ν′ : (l, ν) −→π (l′, ν′′).

This relation can be characterized by a structure over a set of clocks C called
clock difference relations. This structure is a set of (in)equalities of the following
form:

– x′ − y′ 
� u− v
– x′ − y′ 
� 1− (u − v)

where 
�∈ {<,>,=}, x, y, u, v ∈ C. We use primed clock names on the left hand
side of the (in)equalities to denote the fact that these clocks are interpreted in
the target valuation, whereas the unprimed clocks are interpreted in the starting
valuation. The semantics of a clock difference relation B is defined as follows. For
any δ ∈ R, fr(δ) denotes the fractional part of δ. We say that a pair of valuations
(ν, ν′) satisfies B if and only if:

– if x′ − y′ 
� u− v ∈ B then fr(ν′(x)) − fr(ν′(y)) 
� fr(ν(u)) − fr(ν(v)),
– if x′−y′ 
� 1−(u−v) ∈ B then fr(ν′(x))−fr(ν′(y)) 
� 1−(fr(ν(u))−fr(ν(v))).

The semantics of clock difference relations can be extended to sets of clock
difference relations. A pair of valuations (ν, ν′) satisfies a set of clock difference
relations if it satisfies at least one of them. By σ = R

w−→ R′ we denote a set of
(not necessarily all) paths which start in R, lead to R′, and are labeled by the
same word w.

Lemma 1 ([12]). For a given set of paths σ = R
w−→ R′, the reachability rela-

tion
⋃
π∈σ C

π is effectively definable as a (finite) set of clock difference relations.

It follows from this lemma that for any two given sets of paths σ = R
w−→

R′, σ′ = R
w′
−→ R′ can one algorithmically check whether

⋃
π∈σ C

π =
⋃
π∈σ′ Cπ

and whether there is ν such that (ν, ν) ∈
⋃
π∈σ C

π.
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Now we define two concepts characterizing properties of loops in timed au-
tomata and state that they are equivalent for the sampled semantics. Let us
assume that for a given timed automaton A, σ is a set of (not necessarily all)
paths from R back to itself labeled by w in the region automaton. We call this
set of paths a loop σ = R

w−→ R. This loop symbolically represents (fragments
of) runs of A which start in a state (l, ν) ∈ R and end in some state (l, ν′) ∈ R
over some π ∈ σ. A crucial fact for our decision procedure is whether we can
start again from (l, ν′) and run over some π′ ∈ σ, ending in some (l, ν′′) ∈ R,
and whether we can iterate the loop like this unboundedly many times.

Definition 3. For a timed automaton A and a loop σ = R
w−→ R, R = (l, D),

we say that σ can be iterated in the ε-sampled semantics if for any k ∈ N there is
a concrete run (l, ν0) −→π1

ε (l, ν1) −→π2
ε . . . −→πk

ε (l, νk), where πi ∈ σ, νi ∈ D
for all 0 ≤ i ≤ k.

In the real time semantics, any loop σ = R
w−→ R can be iterated, because for

any (l, ν) ∈ R and for any π ∈ σ there is a state (l, ν′) ∈ R such that there
is a run of A over π starting from (l, ν) and ending in (l, ν′). Therefore, one
can compose these runs into an arbitrarily long one. This is not true in the
sampled time domains. There are timed automata such that some loops in their
region automata can be for any ε iterated only finitely many times. Intuitively,
to constitute a real loop it requires that the automaton can get back exactly
to the same concrete valuation in which it started after several iterations of the
loop. This can be characterized in the terms of the reachability relations.

Definition 4. For a timed automaton A and a loop σ = R
w−→ R, R = (l, D),

we say that σ is a real loop if and only if there is k ∈ N and a clock valuation
ν ∈ D such that (ν, ν) ∈ (

⋃
π∈σ C

π)k.

The following lemma characterizes precisely when loops in a region automaton
can be iterated unboundedly many times also in the sampled time domains.

Lemma 2 ([12])
For a timed automaton A and a loop σ = R

w−→ R, where R = (l, D), there is an
ε such that σ can be iterated in ε-sampled semantics if and only if σ is a real loop.

The following observation can give some intuition for the fact that σ = R
w−→ R

cannot be iterated when there is no k such that (ν, ν) ∈ (
⋃
π∈σ C

π)k. For any
ε, there are only finitely many different valuations of the clocks in R. But if for
all k ∈ N, (ν, ν) /∈ (

⋃
π∈σ C

π)k then each iteration of R w−→ R has to result in
a new clock valuation. Thus, it is not possible to iterate the loop again after
sufficiently many iterations. The clock difference relation for the left loop of the
automaton in Figure 1 is y′ − x′ > y − x. After every iteration of the left loop,
the difference between the fractional parts of the clocks x and y grows but it has
to be smaller than 1 all the time. Therefore, the computation will be blocked
after at most 1/ε iterations.
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4 Existential Untimed Sampled Universality (Finite
Words)

In this part we study the decidability of the question whether there exists an
ε such that the untimed ε-sampled language is universal. We give a positive
answer for finite word languages in this section and for infinite word languages
in the next section.

Theorem 1. For a given timed automaton A, the question whether there exists
an ε such that Lε(A) is untimed universal is decidable.

Note that the untimed universality is decidable for dense time semantics (both
L(A) and Lω(A), [3]). For some timed automata, sampled semantics cuts out
some words from their untimed language, i.e., it can happen that for each ε there
is some untimed word w such that w ∈ U(L(A)) and w /∈ U(Lε(A)).

To solve the problem, we present an algorithm such that for a given timed
automaton A the algorithm answers ’YES’ if there is an ε such that Lε(A) is
untimed universal. Otherwise, it answers ’NO’ and gives a procedure which for
each ε returns a counterexample for the untimed universality of Lε(A).

Before presenting the algorithm, we define several auxiliary concepts which
are needed for the description of the loops in the procedure resembling the
subset construction for region automata. We assume a fixed timed automaton
A and its region automaton. Let σ be a set of (not necessarily all) paths in
the region automaton labeled by w. For all prefixes w′ of w, R(σ,w′) denotes
the set of states of the region automaton reachable by the prefixes π′ of paths
π ∈ σ such that π′ is labeled by w′. We say that a set of paths σ over w
is a sequence if for all paths π over w in the region automaton the following
holds: if R(σ,w′) = R(σ ∪ {π}, w′) for all prefixes w′ of w then π ∈ σ (we say
that a sequence is state complete). Note that for a given region automaton each
sequence σ over w is fully determined by the sets R(σ,w′) for all prefixes w′ of
w. Let us assume that σ is a sequence over w and u, v are words such that uv is
a prefix of w. For two states of the region automaton R ∈ R(σ, u), R′ ∈ R(σ, uv)
we define a sequence σ′ = R

v−→ R′ relative to σ, u, v, R,R′ as a set of paths π
from R to R′ labeled by v such that there are paths π′ and π′′, π′ is labeled by u,
and π′ππ′′ ∈ σ. Finally, let Pattern(σ, u, v) denote a partial mapping which for a
pair of states of the region automaton returns a reachability relation according
to the following rule:

Pattern(σ, u, v)(R,R′) =

⎧
⎪⎪⎨

⎪⎪⎩

⋃
π∈σ′ Cπ if R ∈ R(σ, u) and R′ ∈ R(σ, uv);

σ′ = R
u−→ R′ is a sequence

relative to σ, u, v, R,R′

⊥ otherwise

Intuitively, Pattern(σ, u, v) summarizes the reachability pattern relative to σ
(all paths involved have to be the corresponding fragments of the paths in σ)
between states reachable by u and states reachable by uv. A schema of such a
mapping is depicted in Figure 2.
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σ

R1 R4

R1 R2 R3

R5

π4

π5

π6

π8

π7

π3

π2
π1

v

u

R(σ, u)

R(σ.uv)

Cπ3

R5R4

R2 R3R1

R1

Cπ7

Cπ5

Cπ4
Cπ6 ∪ Cπ8

Cπ1 ∪ Cπ2

Fig. 2. A schema of Pattern(σ, u, v). For instance, Pattern(σ, u, v)(R2, R5) = Cπ6∪Cπ8 .
When there is no path in σ between two states of the region automaton labeled by v
(e.g., between R3 and R4) then the corresponding reachability relation is empty (e.g.,
Pattern(σ, u, v)(R3, R4) = ∅).

The algorithm works with the set of colored sequences, i.e., sequences where
every path is either red or green. We define one concept and two simple opera-
tions which the algorithm uses. For a colored sequence σ over w:

– a division of w into w = w1v1v2v3w2 is a full loop of σ if |v1|, |v2|, |v3| >
0, R(σ,w1) = R(σ,w1v1) = R(σ,w1v1v2) = R(σ,w1v1v2v3), Pattern(σ,
w1, v1)=Pattern(σ,w1v1, v2) = Pattern(σ,w1v1v2, v3) = Pattern(σ,w1, v1v2),
and it is the first such division, i.e., there is no such division w = w̄1v̄1v̄2v̄3w̄2

where w̄1v̄1v̄2v̄3 is a strict prefix of w1v1v2v3.1
– reduce(σ, w1v1v2v3w2), where w1v1v2v3w2 is a full loop, is a colored sequence
σ′ built in two steps. First, for every path π in σ such that π = R0

w1v1−→ R
v2−→

R
v3w2−→ R′, put a path π′ = R0

w1v1−→ R
v3w2−→ R′ into σ′ (take only paths which

loop over v2 and cut this loop out, preserve the colors). Secondly, if a path
π ∈ σ′, π = R0

w1v1−→ R
v3w2−→ R′, is green, R = (l, D) and there is no ν ∈ D

such that (ν, ν) ∈ Pattern(σ′, w1v1, v2)(R,R) then change the color of π
to red.

– extend(σ, a) where a ∈ Σ is the colored sequence σ′ over wa such that if
π ∈ σ and π′ is an extension of π by t∗a in the region automaton with the
same color as π then π′ ∈ σ′ (σ′ is the greatest extension of σ over wa).

The full loop concept can be seen as a partial function which for a sequence
σ returns a division such that a set of states repeats four times, creating three
1 If the prefix is nonstrict then we fix any order on such divisions and pick the first

one.
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segments. These segments should have the same reachability pattern and also
their composition should have this pattern. Note, that also Pattern
(σ,w1, v1v2v3) = Pattern(σ,w1v1, v2v3) = Pattern(σ,w1, v1). If there are several
divisions of the required properties, we choose the shortest such division, i.e., we
want w2 to be as big as possible. If there are several such divisions then we fix
some rule to pick one. This decision does not play any role in the correctness of
the algorithm, i.e., the algorithm works for any fixed rule.

The reduction step works with the full loop of a colored sequence and returns
another colored sequence. It first chooses only paths which create a loop over
the middle segment of the full loop (v2). For each such path it checks whether
the loop over v2 can be iterated. If no then the color of the path is changed to
red. Finally, the loops are cut out and the reduced paths are added into the new
colored sequence. Clearly, this sequence is state complete.

The extension step just performs one more symbolic transition for each let-
ter from the alphabet. For each path, it checks whether it can be extended by
some time delay transitions and a discrete transition in the region automaton.
If it is the case, then all such extensions (for any number of time delays and
nondeterministic choices of the transition) are added into the new colored se-
quence (colors are preserved). Clearly, the new sequence is state complete. This
step corresponds to the computation of the successor of a set of states in the
standard subset construction.

The set of colored sequences together with the transitions given by the reduc-
tion and the extension function forms a transition system. Each colored sequence
is a state in the transition system. If the colored sequence can be reduced, then
the only transition outgoing from this sequence is the reduction transition. Oth-
erwise, there is an extension transition outgoing from this sequence for each
letter from the alphabet. The algorithm performs a standard reachability pro-
cedure in this transition system, looking for a colored sequence which does not
contain a green path leading into an accepting state of the region automaton. It
uses two sets of colored sequences, Visited and Passed, as data structures.

The Algorithm. Put the set containing the empty green path (over an empty
word) starting in R0 into Visited.

1. Pick one colored sequence σ over w from Visited.
2. Counterexample? Let ρ ⊆ σ be the set of all green paths in σ. If R(ρ, w)

does not contain any accepting state, stop and answer ’NO’ (the sequence
of steps leading to σ gives a counterexample).

3. Extension. If there is no full loop of σ then remove σ from Visited, add σ
to Passed, and for all a ∈ Σ, if extend(σ, a) /∈ Passed then add extend(σ, a)
into Visited.

4. Reduction. If w = w1v1v2v3w2 is the full loop of σ then let σ′ = reduce(σ,
w1v1v2v3w2). Remove σ from Visited and if σ′ /∈ Passed then add σ′ into
Visited.

5. Universality? If Visited is empty then stop and answer ’YES’. Otherwise,
go to Step 1.
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==

{R5}

R1

R1

R2

R2

{R5}

{R0} {R1, R2} {R1, R2} {R1, R2} {R1, R2}
w1 v1 v2 v3 w2

w = w1v1v2v3w2 is a full loop of σ

Pattern(σ, w1, v1) = Pattern(σ, w1v1, v2) = Pattern(σ, w1v1v2, v3)

Pattern(σ, w1, v1v2)

{R0}

σ over w = w1v1v2v3w2:

{R1, R2} {R1, R2} {R1, R2} {R1, R2}
w1 v1 v2 v3 w2

{R0} {R1, R2} {R1, R2} {R5}

reduce(σ, w1v1v2v3w2):

w1 v1 v3 w2{R1, R2}

Fig. 3. The reduction step of the algorithm. There is a full loop w = w1v1v2v3w2 of σ.
Let us assume that there is no ν such that (ν, ν) ∈ Pattern(σ,w1, v1)(R2, R2) (no loops
over v2 starting at R2 can be iterated). Then reduce(σ,w1v1v2v3w2) changes the color
of all paths that go through R2 after reading w1v1 to red.

A situation where a colored sequence has a full loop and it is reduced is
depicted in Figure 3.

The correctness of the algorithm is based on the following two facts. At first,
the set of the reachable colored sequences is finite, because for each timed
automaton A there is a constant HA such that each sequence over w, where
|w| > HA, has a full loop. This means that it can be (and will be) shortened by
the reduction step. The algorithm extends only irreducible colored sequences.
A bound on the value of HA depending on the timed automaton parameters is
given in [2].

Secondly, there is an ε such that the untimed ε-sampled language of the timed
automaton is not untimed universal if and only if a colored sequence σ over w
which does not contain any green path leading into an accepting state of the region
automaton is reachable. The rest of this section is devoted to this argument.

We state that if Lε(A) is untimed nonuniversal for all ε, but L(A) is untimed
universal, then the languageΣ∗−

⋂
ε U(Lε(A)) (set of words which do not belong

to some Lε(A)) has a special structure. There is an infinite subset of this language
which can be obtained by pumping a word of a certain form. Also, if Lε(A) is
untimed universal for all ε then for each word there is an accepting path of a
special structure defined by the following inductive definition.
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Definition 5. Given a colored sequence σ over w, a path π ∈ σ is fully accepting
if it is accepting, green and either

– σ does not have a full loop, or
– w = w1v1v2v3w2 is a full loop of σ , π = R0

w1v1−→ R
v2−→ R

v3w2−→ Rf
(denote π̄ = R

v2−→ R the segment of π over v2), there is a valuation ν

such that (ν, ν) ∈ Cπ̄, and π′ = R0
w1v1−→ R

v3w2−→ R′ is fully accepting for
reduce(σ,w1v1v2v3w2) over w1v1v3w2.

Let us for a given timed automaton A and a word w denote by σwA a set of
all paths starting in R0 and labeled by w′ such that w = w′ � t in the region
automaton of A. Let also all paths in σwA be green. This set is state complete,
hence a sequence. The proofs of the following lemmata can be found in [2].

Lemma 3. For a given timed automaton A, if for all words w there is a fully
accepting path for σwA then there is an ε such that Lε(A) is untimed universal.

To show the converse, namely that if there is a word w without a fully accepting
path over σwA then there is no ε such that Lε(A) is untimed universal, we define
a recursive function pumped which for a given sequence, a word, and a number
returns a word. If σ over w does not have a full loop then pumped(σ,w, n) = w.
If w = w1v1v2v3w2 is a full loop then the function creates two auxiliary words
w′ = w1v1 �v2 v3w2 which contains a special mark �v2 instead of the subword v2
and w′′ = vn2 . In case that v2 contained some marks, they occur in every copy of
v2. Then it assigns to w̄ the result of pumped(reduce(σ,w1v1v2v3w2), w′, n) and
replaces every occurrence of �v2 in w̄ by w′′.

Lemma 4. For a given timed automaton A, if there is a word w such that no
path π is fully accepting for σwA then for every ε there is an n ∈ N such that
pumped(σwA, w, n) /∈ Lε(A).

This lemma follows from Lemma 2, because there is at least one loop which
cannot be iterated on each accepting path over w. Therefore, it suffices to choose
n so that none of these loops can be iterated n times to guarantee that there is no
concrete run going through any of the accepting paths for pumped(σwA, w, n). It
remains to show that the counterexample produced by the algorithm corresponds
to such a word with no fully accepting path and if there is such a word then the
algorithm finds it.

Lemma 5 (Correctness). For a given timed automaton A, the algorithm al-
ways stops and it answers ’YES’ if and only if there exists an ε such that Lε(A)
is untimed universal.

Proof (Sketch). If for a given timed automaton the algorithm stops and answers
’NO’ then it reports a sequence of steps as a counterexample. Let us consider
the word w obtained by concatenating the letters from the extend operations in
this sequence of steps. Since the algorithm follows Definition 5 and reaches a
colored sequence with green paths leading only into nonaccepting states, there
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is no fully accepting path in σwA. From Lemma 4, there is no ε such that Lε(A)
is untimed universal.

If the timed automaton A is not untimed universal in the real time semantics
then the algorithm stops and answers ’NO’. If A is untimed universal in the real
time semantics but there is no ε such that Lε(A) is untimed universal then from
Lemma 3 there is a word w such that no path in σwA is fully accepting. Because
the algorithm follows Definition 5, it will stop and answer ’NO’.

5 Existential Untimed Sampled Universality (Infinite
Words)

In this section, we give the positive answer to the decidability of the problem
whether for a given timed automaton A there is an ε such that the untimed
ε-sampled ω-language of A is universal.

Theorem 2. For a given timed automaton A, the question whether there exists
an ε such that Lωε (A) is untimed universal is decidable.

We show that the algorithm for finite words can be modified to work also for
infinite words. For a given timed automatonA, Lωε (A) is clearly untimed nonuni-
versal if Lε(A′) is not untimed universal, where A′ is obtained from A by chang-
ing all locations to accepting. Otherwise, we need to find a word w1w2 such
that for each ε there is an n such that there is no accepting run of A over
pumped(σw1w2

A , w1w2, n) · (pumped(σw2 , w2, n))ω in ε-sampled semantics (by σw2

we denote the sequence obtained from σ
w1w

2
2

A by cutting off all prefixes labeled by
w1w2). But for this is it sufficient to find a colored sequence σ over some w1w2

reachable by the algorithm such that R(σ,w1) = R(σ,w1w2) = R(σ,w1w
2
2),

Pattern(σ,w1, w2)) = Pattern(σ,w1, w
2
2), and the following condition holds. Let

ρ ⊆ σ be the set of all green paths in σ. For all R ∈ R(ρ, w) there is no green

path π ∈ σw2 ·σw2 ·σw2 going through an accepting state such that π = R
w3

2−→ R
and there is a ν such that (ν, ν) ∈ Cπ .

Therefore, it is enough to modify the condition for answering ’NO’ and re-
porting a counterexample to follow the description above. The algorithm does
not compute the colored sequence σw2 · σw2 · σw2 , but it can be obviously done
during the check for a counterexample.

Lemma 6 (Correctness). For a given timed automaton A, the modified algo-
rithm always stops and it answers ’YES’ if and only if there exists an ε such
that Lωε (A) is untimed universal.

6 Universal Timed Sampled Universality

A dual question to the one studied in the previous subsection is whether for all
ε it holds that Lε(A) respectively Lωε (A) is timed universal. We show that these
questions are undecidable. The finite word case is equivalent to the dense time
universality and a technique from [1] applies for the infinite word case.
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Theorem 3. For a given timed automaton A, the question whether for all ε it
holds that Lε(A) (Lωε (A)) is timed universal is undecidable.

Proof. In the case of finite timed traces, we show that the timed universality of
Lε(A) is equivalent to the timed universality of L(A), which has been proved
undecidable in [3]. Assume that the answer for the sampled universality problem
for a given automaton A is ’NO’. Then L(A) is not dense time universal, because
for each timed trace w /∈ Lε(A) it holds that w /∈ L(A). To show the other
direction, assume that for a given timed automaton A the language L(A) is not
timed universal. Then there is a timed trace w such that w /∈ L(A) and all
timestamps are rational. This means that all runs of the automaton A over this
timed trace are nonaccepting. But then there is an ε for which this timed trace
is also a Tε-timed trace (and also not accepted).

In the case of infinite timed traces, this argument does not work, because an
infinite timed trace with rational timestamps violating universality in the dense
time case does not have to be a Tε-timed trace for any ε.

Due to Mayr [14], the existence of a space-bounded recurrent-state computa-
tion with insertion errors for alternating channel machines is undecidable. We
sketch an adaptation of the reduction of this problem to the universality checking
for one clock Büchi timed automata from [1]. We need to build a timed automa-
tonA for every alternating channel machineM such thatM has a space-bounded
recurrent-state computation with insertion errors if and only if for all ε, Lωε (A)
is timed universal.

The proof in [1] specifies five conditions in Definition 4 for an ω-language so
that its words correspond exactly to space-bounded recurrent-state computa-
tions with insertion errors of M . We build A such that it accepts precisely those
words that fail to satisfy any of the conditions 1–4 (there is such an automaton
even with one clock). The last condition from this definition says that the max-
imal number of the events in any time unit is bounded. But if there is an ε such
that Lωε (A) is not timed universal then it means that the words accepted by A
in ε-sampled semantics also satisfy this condition.

Conversely, if M has no space-bounded recurrent-state computation with in-
sertion errors then each Tε-timed trace must violate one of the conditions 1–4,
because it automatically satisfies the condition 5. Therefore, it is accepted by A.

7 Remaining Variants

There are two other decision problems arising naturally in our scheme. Both
of them are decidable, but as we show, the problems degenerate to checking
(un)timed universality of Lε(A) or Lωε (A) for one fixed ε, namely ε = 1.

The first problem is to decide whether there is an ε for a timed automaton A
such that Lε(A) is timed universal. But if this is not true for ε = 1 then it is
not true for any ε < 1. If there is a T1-timed trace for which there is no run of
A then this trace is also a Tε-timed trace for every ε < 1 and there is no run of
A over this trace. The same reasoning applies also for Lωε (A).
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The other problem is to decide whether for a timed automaton A it is true
that for all ε, Lε(A) (or Lωε (A)) is untimed universal. But if this is true for
ε = 1 then it is true for any ε < 1. If there is a word w for which there is
an accepting run of A in 1-sampled semantics then this run also accepts w in
ε-sampled semantics for every ε < 1.

Therefore, for both cases, it is enough to check whether L1(A) is (un)timed
universal or whether Lω1 (A) is (un)timed universal and this gives us an answer
for all ε or constitutes a witness of existence of an ε with the checked property.

8 Conclusions and Future Work

In this paper, we have studied the universality problems of timed automata in
sampled semantics. We have shown that the question whether for all sampling
periods ε a timed automaton accepts all timed words in ε-sampled semantics
is undecidable. As a main result, we have presented a novel proof for the de-
cidability of checking whether there is a sampling period such that a timed
automaton accepts all untimed words in ε-sampled semantics is decidable. We
believe that the proof techniques may be used to study other properties of timed
systems, in particular the implementability of timed automata. As future work,
we plan to extend our results to language inclusion checking, i.e, the problem:
given timed automata A and B, whether there exists a sampling period ε such
that Lε(A) ⊆ Lε(B) and the related question for the untimed case. We shall
also study the corresponding questions within the context of timed and untimed
bisimulation.

Acknowledgments. We thank Radek Pelánek for his comments on previous
drafts of this paper.
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Abstract. System L is a linear λ-calculus with numbers and an itera-
tor, which, although imposing linearity restrictions on terms, has all the
computational power of Gödel’s System T . System L owes its power to
two features: the use of a closed reduction strategy (which permits the
construction of an iterator on an open function, but only iterates the
function after it becomes closed), and the use of a liberal typing rule
for iterators based on iterative types. In this paper, we study these new
types, and show how they relate to intersection types. We also give a
sound and complete type reconstruction algorithm for System L.

1 Introduction

Recently new insights into linearity have lead to the development of rich compu-
tational models (see for instance [12,13,1,19,3]). To support them, new strategies
of reduction and new notions of types and typing rules have been introduced.

System L, as defined in [3], extends the linear λ-calculus with numbers,
booleans, pairs, and an iterator. Unlike previous linear versions of System T ,
System L permits to build an iterator term with an open function, but uses
a reduction strategy that will block such subterms until the function becomes
closed (thus preserving linearity). This reduction strategy, which we call closed
reduction, has its roots in work by Girard on cut-elimination strategies [14], and
was used to devise efficient evaluation strategies in the λ-calculus (see [11,13]).

Although linear systems are known to be computationally weak, System L
has all the power of Gödel’s System T (see [3] for details of the encoding of
System T in System L). The use of closed reduction (or more precisely, the fact
that using closed reduction a linear system can deal with more general classes of
terms) is one of the keys to the power of System L: in [2] two linear versions of
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System T , with and without closed-reduction, are analysed; the first is strictly
more powerful, it can represent Ackermann’s function whereas the latter cannot.

The other distinctive feature of System L is the use of a more liberal rule
to type iterators, introducing iterative types. More precisely, in System L it is
possible to construct iterators where in some cases the iterated function is used
with different types each time (so we have a form of polymorphic iteration [18]).

In this paper we study these new types, give a Curry-style type system for
System L, and relate it to intersection type assignment systems. Intersection
types were introduced by Coppo and Dezani in [7], and since then they have
been used to characterise classes of terms with specific normalisation properties
(see e.g. [23,5]), to define type systems with principal typings [17], to define
models for the λ-calculus [6], etc. General intersection type assignment systems
are undecidable, but several decidable restrictions have been defined (see for
example [4,16,10]). Iterative types can be seen as a new decidable restriction of
intersection types based on iteration. The type system of System L is decidable:
one of the main contributions of this paper is a type reconstruction algorithm
for System L.

The rest of this paper is structured as follows. In the next section we recall
System L. Section 3 gives a type reconstruction algorithm, including the iterator
types, with soundness and completeness proofs. Section 4 contains a detailed
analysis of iterator types. Section 5 concludes the paper.

2 Linear λ-Calculus with Iterator: System L
In this section we recall the syntax, reduction rules and typing rules of System
L (for more details we refer the reader to [3]).

The set of linear λ-terms is built from: variables x, y, . . .; linear abstraction
λx.t, where x ∈ fv(t); and application tu, where fv(t) ∩ fv(u) = ∅. Here fv(t)
denotes the set of free variables of t. Because x is used at least once in the
body of the abstraction, and the condition on the application ensures that all
variables are used at most once, these terms are syntactically linear (variables
occur exactly once in each term).

Since we are in a linear calculus, we cannot have the usual notion of pairs and
projections; instead, we have pairs and splitters:

〈t, u〉 if fv(t) ∩ fv(u) = ∅

let 〈x, y〉 = t in u if x, y ∈ fv(u) and fv(t) ∩ fv(u)=∅

Note that when projecting from a pair, we use both projections. A simple ex-
ample is the swapping function: λx.let 〈y, z〉 = x in 〈z, y〉.

Finally, we have booleans true and false, with a linear conditional: cond t u v
where fv(t)∩ fv(u) = ∅ and fv(u) = fv(v); and numbers (built from 0 and S), with
a linear iterator: iter t u v where fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = fv(v) ∩ fv(t) = ∅.
Sn0 denotes n applications of S to 0. Table 1 summarises the syntax of System L.

The dynamics of the system is given by a set of conditional reduction rules
(which can be seen as a higher-order membership conditional rewrite system,
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Table 1. Terms

Construction Variable Constraint Free Variables (fv)

0, true, false − ∅

S t − fv(t)

iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = ∅ fv(t) ∪ fv(u) ∪ fv(v)
fv(t) ∩ fv(v) = ∅

x − {x}
tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λx.t x ∈ fv(t) fv(t) � {x}
〈t, u〉 fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

let 〈x, y〉 = t in u fv(t) ∩ fv(u) = ∅, x, y ∈ fv(u) fv(t) ∪ (fv(u) � {x, y})
cond t u v fv(u) = fv(v), fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

see [25,26]). The conditions on the rewrite rules ensure that Beta only applies to
redexes where the argument is a closed term (which implies that α-conversion is
not needed to implement substitution), and only closed functions are iterated.
Table 2 gives the reduction rules for System L, substitution is a meta-operation
defined as usual. Reductions can take place in any context.

Table 2. Closed reduction

Name Reduction Condition

Beta (λx.t)v −→ t[v/x] fv(v) = ∅

Let let 〈x, y〉 = 〈t, u〉 in v −→ (v[t/x])[u/y] fv(t) = fv(u) = ∅

Cond cond true u v −→ u
Cond cond false u v −→ v
Iter iter (S t) u v −→ v(iter t u v) fv(tv) = ∅

Iter iter 0 u v −→ u fv(v) = ∅

We give some examples to illustrate the system.

– Erasing numbers: although we are in a linear system, we can erase numbers
by using them in iterators.

fst = λx.let 〈u, v〉 = x in iter v u (λz.z)
snd = λx.let 〈u, v〉 = x in iter u v (λz.z)

– Copying numbers: C = λx.iter x 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈S a, S b〉) takes
a number n and returns a pair 〈n, n〉.

– Addition: add = λmn.iter m n (λx.S x)
– Multiplication: λmn.iter m 0 (add n)
– Predecessor: λn.fst(iter n 〈0, 0〉 (λx.let 〈t, u〉 = C(snd x) in 〈t, S u〉))
– Ackermann: ack(m,n) = (iter m (λx.S x) (λgu.iter (S u) (S 0) g)) n

To type the terms in System L we use a set of linear types :

A,B ::= Nat | Bool | α | A−◦B | A⊗B



20 S. Alves et al.

where Nat and Bool are the types of numbers and booleans, and α is a type
variable.

Let A0, . . . , An be a (non-empty) list of linear types. It(A0, . . . , An) denotes
a non-empty set of iterative types defined by induction on n:

n = 0 : It(A0) = {A0 −◦A0}
n = 1 : It(A0, A1) = {A0 −◦A1}
n ≥ 2 : It(A0, . . . , An) = It(A0, . . . , An−1) ∪ {An−1 −◦An}

Iterative types will serve to type the functions used in iterators. Note that
It(A0) = It(A0, A0) = It(A0, . . . , A0).

The typing rules specifying how to assign types to untyped terms are given in
Figure 1, where we use the following abbreviations: Γ 
L t : It(A0, . . . , An) iff
Γ 
L t : B for each B ∈ It(A0, . . . , An). It is a Curry-style type system (there
are no type decorations in terms). We do not have Weakening and Contraction
rules: we are in a linear system; the logical rules split the context between the
premises. For terms of the form iter t u v, we check that t is a term of type Nat
and that v and u are compatible. There are two cases: if t is Sn0 then we require
v to be a function that can be iterated n times on u. Otherwise, if t is not (yet)
a number, we require v to have a type that allows it to be iterated any number
of times (i.e. u has type A and v : A−◦A, for some type A).

All the examples above can be typed in a straightforward way. More interest-
ingly, the term D = λz.iter (S20) (λxy.〈x, y〉) (λx.xz) which allows us to copy
arbitrary closed terms in System L (for any closed term t, D t −→∗ 〈t, t〉, see [3]
for more details), is typable. We show a type derivation for D, which illustrates
the use of iterative types. In the following type derivation N denotes Nat and B
denotes A⊗A.

�L 0 : N

�L S 0 : N

�L S20 : N

x : A �L x : A y : A �L y : A

x : A, y : A �L 〈x, y〉 : B
x : A �L λy.〈x, y〉 : A−◦ B
�L λxy.〈x, y〉 : A−◦ A−◦ B z : A �L (λx.xz) : It(A−◦ A−◦ B,A−◦ B,B)

z : A �L iter (S20) (λxy.〈x, y〉) (λx.xz) : B

�L λz.iter (S20) (λxy.〈x, y〉) (λx.xz) : A−◦ B
Note that

x : A−◦A−◦B �L x : A−◦A−◦B z : A �L z : A

x : A−◦ A−◦ B, z : A �L xz : A−◦ B
z : A �L (λx.xz) : (A−◦A−◦B)−◦ (A−◦B)

and

x : A−◦B �L x : A−◦B z : A �L z : A

x : A−◦ B, z : A �L xz : B

z : A �L (λx.xz) : (A−◦B)−◦B
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Axiom and Structural Rule:

(Axiom)
x : A �L x : A

Γ, x : A, y : B,Δ �L t : C
(Exchange)

Γ, y : B, x : A,Δ �L t : C

Logical Rules:

Γ, x : A �L t : B
(−◦Intro)

Γ �L λx.t : A−◦B
Γ �L t : A−◦B Δ �L u : A

(−◦Elim)
Γ,Δ �L tu : B

Γ �L t : A Δ �L u : B
(⊗Intro)

Γ,Δ �L 〈t, u〉 : A⊗B
Γ �L t : A⊗B Δ,x : A, y : B �L u : C

(⊗Elim)
Γ,Δ �L let 〈x, y〉 = t in u : C

Numbers

(Zero)
�L 0 : Nat

Γ �L n : Nat
(Succ)

Γ �L S n : Nat

Γ �L t : Nat Θ �L u : A0 Δ �L v : It(A0, . . . , An) (�)
(Iter)

Γ,Θ,Δ �L iter t u v : An

(�) where if t ≡ Sm0 then n = m otherwise n = 0
Booleans

(True)
�L true : Bool

(False)
�L false : Bool

Δ �L t : Bool Γ �L u : A Γ �L v : A
(Cond)

Γ,Δ �L cond t u v : A

Fig. 1. Type System for System L

Therefore z : A 
L (λx.xz) : It(A−◦A−◦B,A−◦B,B)
We recall from [3] that System L is confluent, reductions preserve types, and

typable terms are strongly normalisable1.

3 Linear Type Reconstruction

This section develops a type reconstruction algorithm for System L. Our algo-
rithm is in a similar style to that of Damas-Milner [9]. We begin by giving a
presentation of the type assignment rules which will suggest a type reconstruc-
tion algorithm. We will prove it to be both sound and complete with respect to
these rules. We refer the reader to [22,9,8] for background to this work.

SystemL is a resource sensitive calculus, and we place a restriction on the use of
assumptions in a derivation: namely use them all exactly once. Its type system is
given in a multiplicative style, where each term is provided with the exact number of
type assumptions for its free variables. Following [20], we will simulate a multiplica-
tive system using a hybrid (in between multiplicative and additive) presentation of
the rules. We will write typing judgements in the following way:
1 In [3] there are no type variables, but the same results hold here since we don’t have

instantiation rules.
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Γ | Θ 
L t : A

where Γ and Θ are lists such that the elements in Θ are also in Γ , and Γ � Θ
contains precisely the assumptions necessary to type t; we call Γ the before-set
and Θ the after-set, indicating that the derivation uses the assumptions only in
Γ �Θ. The idea is best explained by an example. Consider the rule:

Γ | Δ 
L t : A−◦B Δ | Θ 
L u : A
(−◦Elim)

Γ | Θ 
L tu : B

This rule states that if we type tu using Γ then Θ will be left over. We give
t all of the assumptions, and the remaining Δ are given to u. The ones that
are not consumed here are exactly those which are left over in typing tu. The
rationale for choosing this notation will become more apparent when we present
the type reconstruction algorithm.

The full type assignment for System L using the “before-and-after” presen-
tation is given in Figure 2, where we write Γ, x : A to denote the list obtained
by adding to Γ the element x : A at the end (and in general we write Γ,Δ for
list concatenation), and x : A ∈ Γ holds if x : A is the last assumption for x in
the list Γ . The notation Γ � {x : A} represents the list Γ where we have deleted
the last assumption for x (and in general, Γ �Δ denotes the list Γ without the
elements in Δ).

To relate the two versions of the type system (see Figures 1 and 2) we need
some lemmas, where we use the following notation: if Γ | Δ is a type environment
in the hybrid system, then we write Γ | Δ to denote any permutation of Γ that
preserves the relative order of assumptions for the same variable (that is, all the
assumptions for x occur in the same order in Γ and Γ ) and the corresponding
sub-list Δ.

Lemma 1 (Permutations). If Γ | Δ 
L t:A, then Γ | Δ 
L t:A.

Proof. By induction on the derivation. In the permutation, only the relative
order of the assumptions for x is relevant in the Axiom.

Lemma 2 (Monotonicity). Γ | Γ ′ 
L t:A if and only if Δ,Γ | Δ,Γ ′ 
L t:A.

Proof. By induction on the type derivation.

As a consequence of these lemmas, Γ | Γ ′ 
L t : A implies Γ � Γ ′ | ∅ 
L t : A
(since the elements in Γ ′ are also in Γ ).

The relationship between the multiplicative and the hybrid versions of System
L is as follows:

Theorem 1. – If Γ 
L t : A then Γ | ∅ 
L t : A for any permutation Γ .
– If Γ | ∅ 
L t : A for some permutation Γ then Γ 
L t : A.

Proof. ⇒) By induction on the type derivation, using the previous lemmas. We
distinguish cases according to the last rule applied; some interesting cases are:
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Axiom:
x : A ∈ Γ

(Axiom)
Γ | Γ � {x : A} �L x : A

Logical Rules:

Γ, x : A | Δ �L t : B
(−◦Intro)

Γ | Δ �L λx.t : A−◦ B
Γ | Γ ′ �L t : A−◦B Γ ′ | Δ �L u : A

(−◦Elim)
Γ | Δ �L tu : B

Γ | Γ ′ �L t : A Γ ′ | Δ �L u : B
(⊗Intro)

Γ | Δ �L 〈t, u〉 : A⊗B

Γ | Γ ′ �L t : A⊗B Γ ′, x : A, y : B | Δ �L u : C
(⊗Elim)

Γ | Δ �L let 〈x, y〉 = t in u : C

Numbers

(Zero)
Γ | Γ �L 0 : Nat

Γ | Γ ′ �L n : Nat
(Succ)

Γ | Γ ′ �L S n : Nat

Γ | Γ ′ �L t : Nat Γ ′ | Θ �L u : A0 Θ | Δ �L v : It(A0, . . . , An) (�)
(Iter)

Γ | Δ �L iter t u v : An

(�) where if t ≡ Sm 0 then n = m otherwise n = 0

Booleans

(True)
Γ | Γ �L true : Bool

(False)
Γ | Γ �L false : Bool

Γ | Δ �L t : Bool Δ | Θ �L u : A Δ | Θ �L v : A
(Cond)

Γ | Θ �L cond t u v : A

Fig. 2. Hybrid Type System for System L

– Exchange: Since the type environment contains the same elements in the
premise and conclusion, the result follows directly by induction.

– −◦Intro: By induction, Γ, x : A | ∅ 
L t : B, for any permutation of Γ, x : A.
In particular, Γ, x : A | ∅ 
L t : B, and the result follows using −◦Intro in
the hybrid system.

– Iter: By induction, Γ | ∅ 
L t : Nat, Θ | ∅ 
L u : A0, and Δ | ∅ 
L v :
It(A0, . . . , An). By Monotonicity, Δ,Θ, Γ | Δ,Θ 
L t : Nat and Δ,Θ | Θ 
L
u : A0. Then, using rule Iter in the hybrid system we obtain: Δ,Θ, Γ | ∅ 
L
iter t u v : It(A0, . . . , An). The result follows using the Permutation lemma.
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⇐) We assume Γ | ∅ 
L t : A for some permutation, and proceed by induction
on t, using the previous lemmas. Again, we distinguish cases according to the
last rule applied, and show only some interesting cases.

– −◦Elim: The premises are: Γ | Γ ′ 
L t : A −◦ B, and Γ ′ | ∅ 
L u : A,
then by Monotonicity we also have Γ � Γ ′ | ∅ 
L t : A−◦B. By induction:
Γ � Γ ′ 
L t : A and Γ ′ 
L u : A, then Γ, Γ ′ 
L tu : B, using −◦Elim in the
multiplicative version.

– Iter: The premises are: Γ | Γ ′ 
L t : Nat, and Γ ′ | Θ 
L u : A0, and Θ | ∅ 
L
v : It(A0, . . . , An). Then by Monotonicity we also have Γ �Γ ′ | ∅ 
L t : Nat,
and Γ ′�Θ | ∅ 
L u : A0. By induction: Γ �Γ ′ 
L t : Nat, Γ ′�Θ 
L u : A0,
and Θ 
L v : It(A0, . . . , An). Since Γ = Γ � Γ ′ ∪ Γ ′ � Θ ∪ Θ, the result
follows using Iter in the multiplicative version, and the Permutation lemma.

3.1 The Type Reconstruction Algorithm L
Our presentation of the algorithm L will assume that the terms are syntactically
linear. It is a trivial extension to the algorithm to perform this kind of checking—
we just need extra conditions to be satisfied.

We will need unification of types in this section, a simple extension to the
unification algorithm used in Damas-Milner’s system, based on a variant of
Robinson’s theorem [24]. The definition is standard (see for instance [21]). Sub-
stitutions are mappings from type variables to types. They are associative and
idempotent; composition is denoted by juxtaposition. We assume that mguAB
gives the most general unifier of A and B, that is, a substitution U such that:
UA = UB; if V also unifies A and B then V is a substitution instance of U ,
i.e. V = SU for some substitution S; and the final requirement is that U only in-
volves variables in A and B—no new variables are introduced during unification.
If A, B are not unifiable then mguAB fails. Our type reconstruction algorithm
will take as input a term and a list of type assumptions for variables. To re-
flect the linearity constraint that all assumptions must be used exactly once, we
treat type assumptions as resources—once an assumption is used, we remove it.
To this end our type reconstruction algorithm will return a triple (rather than
a pair as in the case of W), which consists of a substitution, a type, and the
assumptions not yet used.

We write R,S to range over substitutions, α, β to range over type variables,
Γ, Γ ′ to range over lists of assumptions. We write id for the identity substitution,
and substitution over lists is defined element-wise. For a substitution R, we
write R(Γ | Γ ′) for RΓ | RΓ ′, and define substitution on judgements by :
R(Γ | Γ ′ 
L t : A) = RΓ | RΓ ′ 
L t : RA. We assume that the function new
returns a fresh type variable each time it is called.

Definition 1 (Type Reconstruction Algorithm L). L(Γ, e) = (T, τ, Γ ′)
where:
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1. If e is the identifier x, and x : A ∈ Γ then T = id, τ = A, Γ ′ = Γ � {x : A}.
2. If e is of the form 〈t, u〉, let

(R,A, Γ1) = L(Γ, t)
(S,B, Γ2) = L(RΓ1, u)

then T = SR, τ = SA⊗B,Γ ′ = Γ2.
3. If e is of the form let 〈x, y〉 = t in u, let

(R,A, Γ1) = L(Γ, t)
U = mgu A α⊗ β; α, β new
(S,B, Γ2) = L((URΓ1, x : Uα, y : Uβ), u)

then T = SUR, τ = B,Γ ′ = Γ2.
4. If e is of the form λx.t, let

(R,B, Γ1) = L((Γ, x : α), t); α new

then T = R, τ = Rα−◦B,Γ ′ = Γ1.
5. If e is of the form tu, let

(R,C, Γ1) = L(Γ, t)
(S,A, Γ2) = L(RΓ1, u)
U = mgu (SC) (A−◦ β); β new

then T = USR, τ = Uβ, Γ ′ = Γ2.
6. If e is 0 then T = id, τ = Nat and Γ ′ = Γ .
7. If e is S t, and L(Γ, t) = (R,A, Γ1), and mgu A Nat = U , then T = UR,

τ = Nat and Γ ′ = Γ1.
8. If e is of the form iter t u v, where t �= Sm0, let

(R,C, Γ1) = L(Γ, t)
U = mgu C Nat
(S,A, Γ2) = L(URΓ1, u)
(T ′, B, Γ3) = L(SΓ2, v)
V = mgu B (T ′(A−◦A))

then T = V T ′SUR, τ = V T ′A,Γ ′ = Γ3.
9. If e is of the form iter (Sm0) u v, let

(S,B, Γ0) = L(Γ, u)
(R,A, Γ1) = L(SΓ0, v)
B0 = RB
S0 = RS

for i = 1 · · ·m{ Ui = mgu A (Bi−1 −◦ βi); βi new
Bi = Uiβi
Si = UiS0

}
Condition : S1Γ0 = · · · = SmΓ0

then T = Sm, τ = Bm, Γ
′ = Γ1.
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10. If e is true or false then T = id, τ = Bool and Γ ′ = Γ .
11. If e is of the form cond t u v, let

(R,C, Γ1) = L(Γ, t)
U = mgu C Bool
(S, ρ, Γ2) = L(URΓ1, u)
(S′, σ, Γ3) = L(SURΓ1, v)
Condition : Γ3 = Γ2

V = mgu σ S′ρ

then T = V S′SUR, τ = V σ, Γ ′ = Γ2(= Γ3).

Note that L fails if it is not one of the above forms.

Cases 1-7, 10 and 11 are standard for a linear λ-calculus with numbers, booleans
and pairs (see [20]). Cases 8 and 9 deal with iterator terms. In case 8 we first
check that t can be given type Nat, then type u with the remaining assumptions,
and finally type v using only the assumptions not consumed in the typing of t
and u, checking that v has an arrow type of the correct form. The interesting
case is 9: here we deal with an iterator term in which the number of iterations
is known. We type u and v as in case 8, and then check that v can be given a
set of iterative types.

Soundness of L. If the algorithm L succeeds in typing a term e under some
assumptions, then we want to be sure that e actually is typable. This is called
Soundness and states that our algorithm is safe—it produces no wrong results.

Lemma 3 (Substitution). If there is a derivation Γ | Γ ′ 
L e : τ then, for
any substitution S, there is also a derivation for S(Γ | Γ ′) 
L e : Sτ .

Proof. By induction over the length of the derivation.

Theorem 2 (Soundness of L). If L(Γ, e) succeeds with (S, τ, Γ ′) then there
is a derivation of S(Γ | Γ ′) 
L e : τ .

Proof. By induction on the structure of terms e, using the Substitution Lemma
and the fact that substitutions are idempotent. We show two cases:

1. If e is of the form 〈t, u〉 then L(Γ, t) succeeds with (R,A, Γ1) and L(RΓ1, u)
succeeds with (S,B, Γ2). By induction twice, there are derivations R(Γ |
Γ1) 
L t : A and S(RΓ1 | Γ2) 
L u : B. Since Γ2 is included in RΓ1, and R
is idempotent, also SR(Γ1 | Γ2) 
 u : B. By Lemma 3 we can write the first
derivation as SR(Γ | Γ1) 
 t : SA. Now, by ⊗Intro SR(Γ | Γ2) 
L e : SA⊗B.

2. If e is of the form iter t u v and t �= Sm0, then L(Γ, t) succeeds with (R,C, Γ1)
and mgu C Nat succeeds with a substitution U . L(URΓ1, u) succeeds with
(S,A, Γ2), L(SΓ2, v) succeeds with (T ′, B, Γ3), and mgu B (T ′A −◦ T ′A)
succeeds with a substitution V . Now by induction and Lemma 3 there are
derivations ending in V T ′SUR(Γ | Γ1) 
L t : Nat, V T ′SUR(Γ1 | Γ2) 
L u :
V T ′A, and V T ′SUR(Γ2 | Γ3) 
L v : V T ′A−◦ V T ′A, and the result follows
by the Iter rule.
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Completeness of L. If a term can be typed using the inference rules, then we
would require our algorithm to also be able to compute the type of this term.
The proof follows closely the proof of the completeness of W in [8]. Note that a
notion of principal type follows as an immediate corollary of the completeness
theorem.

Theorem 3 (Completeness of L). If there is a derivation S(Γ | Γ1) 
L e : τ
for some substitution S, then:

1. L(Γ, e) succeeds with (R,A, Γ1) for some R,A.
2. There exists a substitution T such that: TR(Γ | Γ1) = S(Γ | Γ1) and TA = τ .

Proof. By induction over the structure of e.

4 Iterative Types

In this section we present two intersection type systems closely related to System
L. The first one is based on Damas’s type system[8], a less known polymorphic
type system with the same power of the Hindley-Milner system. The second is
based on rank-2 intersection types [4,16].

Iterative types are a compact way of expressing several type derivations for
an iterated function. Consider the iterator function itself λx.iter t u x. When
this function is applied to a term v our type rules assume that v must be typed
with every type in It(A0, . . . , An). Another way to see it is to type iter t u x
with multiple assumptions for x, and then type v with all the elements of the set
of types declared for x. One standard way to extend a type system by allowing
multiple assumptions for free variables is by using intersection types.

4.1 Polymorphic Iteration

In the system presented here, which we call System LI , intersection types are
only used in the set of assumptions for free variables. This kind of restriction
to intersection type systems was first used in Damas’s PhD thesis [8] in the
definition of a system (later called Damas’s System T [15]) with the same set of
typable expressions as the widely known Hindley-Milner system, but that instead
of using ∀-quantified types, allows multiple types in the set of assumptions for
each free variable. We will use a similar method to type iterators.

We consider the set Types, of linear types defined in Section 2. Let S range
over the set of all finite non-empty subsets of Types. The set Inter of intersection
types is defined as follows: Ā ::= ∧S. The type environments (or bases in the
terminology of intersection systems) of the systems presented in this section
represent a total function from the set of variables of the term to Inter. Bases
that associate to term-variables elements of Types will be called monomorphic.

System LI is obtained from System L by replacing the rule for (Iter) by the
two rules given in Figure 3.
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Γ �LI t : Nat Δ �LI u : A0

(VarIter)
Γ, x : ∧It(A0, . . . , An),Δ �LI iter t u x : An

(�) where if t ≡ Sm0 then n = m otherwise n = 0

Γ, x : ∧S �LI iter t u x : A ∀Bi ∈ S.Δ �LI v : Bi

(Iter)
Γ,Δ �LI iter t u v : A

Fig. 3. System L with Intersection Types

System LI allows multiple types in the set of assumptions for each free vari-
able. This can be seen as using intersection types for free variables and System
LI can be seen as a restriction of a system of rank-2 intersection types.

We now show two results relating System L and System LI .

Theorem 4. If there is a derivation Γ 
L e : τ , then Γ 
LI e : τ

Proof. We only show the case for Iter, as the other cases are trivial by induction.
If e is of the form iter t u v, then Γ,Θ,Δ 
L iter t u v : An if Γ 
L t : Nat,

Θ 
L u : A0 and Δ 
L v : It(A0, . . . , An), where if t ≡ Sm0 then n = m
otherwise n = 0. By induction, Γ 
LI t : Nat and Θ 
LI u : A0. Therefore by
VarIter and Exchange, Γ,Θ, x : ∧It(A0, . . . , An) 
LI iter t u x : An. Again by
induction, ∀Bi ∈ It(A0, . . . , An).Δ 
LI v : Bi. Thus, by Iter

Γ,Θ,Δ 
LI iter t u v : An.

This last result shows that any term typable in System L is also typable in
LI . The opposite does not hold, i.e, system LI allows more typings than System
L. In particular, when typing an open term of the form iter (Sm0) u x, it allows x
to have an iterative type It(A0, . . . , An). For example, we can have the following
derivation in System LI (consider for example, Γ = {x : ∧It(A−◦Nat−◦Nat⊗
Nat, . . . ,Nat⊗ Nat)}):

Γ 
LI (λy.fst y)(iter (S20) (λx1x2.〈x1, x2〉) x) : Nat

but the term (λy.fst y)(iter (S20) (λx1x2.〈x1, x2〉) x) is not typable in System L,
because, for (iter (S20) (λx1x2.〈x1, x2〉) x), we can only have derivations of the
form (consider Γ = {x : (A−◦A−◦A⊗A)−◦ (A−◦A−◦A⊗A)}):

Γ 
L iter (S20) (λx1x2.〈x1, x2〉) x : A−◦A−◦A⊗A.

Note however that, if the bases used in derivations in System LI are monomor-
phic, then those terms are also typable in System L.

Theorem 5. If there is a derivation Γ 
LI e : τ , with Γ monomorphic, then
Γ 
L e : τ .
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Proof. We only show the case for Iter, as the other cases are trivial by induction.
If e is of the form iter t u v, then Γ,Δ 
LI iter t u v : An if

Γ, x : ∧It(A0, . . . , An) 
LI : iter t u x : An Δ 
LI v : It(A0, . . . , An)

Also, Γ, x : ∧It(A0, . . . , An) 
LI : iter t u x : An if Γ ′ 
LI t : Nat and Γ ′′ 
LI u :
A0 where if t ≡ Sm0 then n = m otherwise n = 0, and Γ = Γ ′, Γ ′′. By induction
hypothesis: Γ ′ 
L t : Nat Γ ′′ 
L u : A0 Δ 
L v : It(A0, . . . , An). Thus, by
Iter Γ,Δ 
L iter t u v : An.

In particular for closed terms, the two systems are equivalent.

Corollary 1. 
L e : τ iff 
LI e : τ .

4.2 Rank 2 Intersection Types: System L2
I

Being able to type terms of the form iter (Sm0) u x using intersections like we
do in System LI , does not really give us more interesting terms, because we can
not abstract on x, therefore it will never be replaced by the function to iterate.
The system presented now extends System LI in that sense.

The rank 2 intersection type assignment for System L (which we call System
L2
I) is obtained from System LI , by replacing the rules −◦Intro and −◦Elim by

the two rules given in Figure 4. Note that we do not distinguish the types ∧{A}

Γ, x : ∧S �L2
I
t : B

(−◦Intro)
Γ �L2

I
λx.t : ∧S −◦ B

Γ �L2
I
t : ∧S −◦B ∀Ai ∈ S.Δ �L2

I
u : Ai

(−◦Elim)
Γ,Δ �L2

I
tu : B

Fig. 4. Rank 2 Intersection Types version of System L

and A. This system corresponds to a linear version of a rank 2 intersection type
system with iterators, and it includes System L (and System LI).

Theorem 6. If there is a derivation Γ 
L e : τ , then Γ 
L2
I
e : τ

Proof. Similar to Theorem 4.

Note that terms typable in System LI are also typable in System L2
I , since the

rules −◦Intro and −◦Elim of System LI , are a subcase of the same rules in System
L2
I .
System L2

I is stronger than System LI (therefore, than System L), since it
allows abstractions on polymorphic variables. Note however, that polymorphic



30 S. Alves et al.

variables are only introduced through VarIter. For example, we can have the
following typing in System L2

I :


L2
I

(λy.(λx.fst x)(iter (S20) (λx1x2.x1x2) y))(λz.z(S30)) : Nat

but this term is not typable in System L. Note also that System L2
I allows us

to write more compact versions of admissible linear terms. Consider for example
F to be a closed function with types It(A −◦ Nat−◦ Nat⊗ Nat, . . . ,Nat⊗ Nat),
then (λfp.cond p (iter (S20) 0 f) (iter (S20) (S0) f))F is typable in System L2

I .
Subject reduction for Systems LI and L2

I is proved in a similar way as for
System L. As for confluence, since we proved confluence for untyped terms in [3],
that result, together with subject reduction, implies confluence for terms typable
in Systems LI and L2

I .
Summarising, we have shown how iterative types are related with intersection

types, which in turn shows the expressiveness of System L. The relation between
the set of terms typable in the three systems is: L ⊂ LI ⊂ L2

I . Furthermore, for
closed terms (therefore programs): L = LI .

5 Conclusions

We have studied a new type construct, shown its relationship with intersection
types, and given a type reconstruction algorithm for it. Since it is known that the
calculus is strongly normalising, type reconstruction has the usual applications.
The results relating iterative types and intersection types, together with the
results in [3] which show that System L can simulate Gödel’s System T , indicate
that System L is even more expressive than System T , it actually corresponds
to a version of System T with a restricted form of intersection types.
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Abstract. An extension of the �-calculus is proposed, to study resource usage
analysis and verification. Resources can be dynamically created, and passed � re-
turned by functions; their usages have side e�ects, represented by events. Usage
policies are properties over histories of events, and have a possibly nested, local
scope. A type and e�ect system over-approximates the set of histories a program
can generate at run-time. A crucial point solved here concerns correctly associ-
ating fresh resources with their usages within approximations. A second issue is
that these approximations may contain an unbounded number of fresh resources.
Despite of that, we have devised a technique to model-check validity of approx-
imations. A program with a valid approximation is resource-safe: no run-time
monitor is needed to safely drive its executions.

1 Introduction

An important aspect of programming language design and implementation is how to
ensure that resources are used correctly. The typical run-time mechanisms for enforc-
ing resource usage policies are execution monitors, which abort executions whenever
about to violate the usage policy prescribed by the programmer. The events observed
by these monitors are accesses to sensible resources, e.g. opening socket connections,
reading�writing files, allocating�deallocating memory. A main issue is finding a compro-
mise between the expressivity of usage policies and the eÆciency of the enforcement
mechanism. Static analysis techniques may be applied to improve eÆciency, but this
often results in an unacceptable restriction of the expressive power of policies.

A common mechanism for enforcing usage policies consists in guarding with local
checks the program points where critical resources can be accessed [10,18]. Local checks
have a main drawback: they must be explicitly inserted into code by the programmer.
Since forgetting even a single check might compromise the safety of the whole applica-
tion, programmers have to inspect very carefully their code. This may be cumbersome
even for small programs, and it may easily lead to unnecessary checking.

A safer approach is that of global policies, where the execution monitor enforces a
global invariant that must hold at any point of the execution. This may involve guarding
each resource access, and ad-hoc optimizations are then in order to recover eÆciency,
e.g. compiling the global policy to local checks [7,14]. Furthermore, a large monolithic
policy may be hard to understand, and not very flexible either. Indeed, one has to imagine
all the possible resource usage scenarios in advance. If an unexpected situation occurs
at run-time (e.g. a piece of mobile code with specific resource usage requirements), the
global policy must be dynamically updated, if possible at all.

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 32–47, 2007.
c� Springer-Verlag Berlin Heidelberg 2007
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A more flexible approach consists in attaching usage policies to resources, so to adapt
them to the context where a resource is used. For example, one may restrain the capa-
bilities before calling untrusted code. In [12], a type system extracts from programs an
approximation of their possible run-time usage behaviour. Usage policies are arbitrary
sets of permitted histories, so statically verifying whether the permitted usages include
the extracted approximation is undecidable. Run-time monitoring is thus still needed,
unless one restricts to some decidable fragments. As for expressiveness, a limitation is
that you can only control the usage of resources you have created. In a mobile code
scenario, e.g. a browser that runs untrusted applets, it is also important that you can
impose constraints on how external programs manage the resources created in your
local environment. For example, an applet may create an unbounded number of re-
sources on the browser site, and never release them. This clearly leads to denial-of-
service attacks, that may eventually crash the whole system.

We consider here a language that aims at reconciling expressivity of resource us-
age policies with eÆciency of the enforcement mechanism. This language, called �[ ]

(lambda-box), has primitives for creating and accessing resources, and for defining lo-
cal resource usage policies. Sequences of resource accesses in executions are called
histories; a policy is a regular property of histories. A program fragment e protected
by a policy � is written �[e], called policy framing. Roughly, while evaluating e, the
histories must respect the policy �. Of course, framings can be nested.

Local policies generalise both local checks and global policies. They smoothly allow
for safe composition of programs with their own private policies, also in mobile code
scenarios. Indeed, there is no need to dynamically accommodate the local private poli-
cies into a single global one, possibly invalidating syntax-directed optimizations of the
enforcement mechanism. Local policies may o�er protection also in the web-services
scenario [3]: there, one has not full control on the code to run, and thus inserting local
checks is infeasible. For example, a browser must obey a usage policy specified by the
user. Additionally, the browser can invoke a policy provider to obtain a stricter security
policy, used for dynamically sandboxing applets. This rich interplay between policies
seems diÆcult to express in the above-mentioned approaches.

In �[ ], eÆciency of resource usage control is obtained through a suitable combination
of static techniques. The type and e�ect system over-approximates the run-time usage
behaviour of a program, by inferring a history expression that denotes all the possi-
ble histories resulting from executions. A history expression is valid when it contains
permitted usage patterns only; a program with a valid history expression will never go
wrong. Validity of history expressions is then verified through model-checking.

This approach was originally introduced in [1] to deal with history-based access
control. The present version extends [1] with dynamic creation of resources. This ap-
parently little extension demands for addressing a more general problem, from various
viewpoints: one has to correctly bind the creation of new resources to their usages. The
solution to this problem deeply a�ects the techniques of [1], with respect to the follow-
ing points: (i) the enforcement mechanism, (ii) the semantics of history expressions,
(iii) the type and e�ect system, and (iv) the verification technique.

For the first point, we introduce template usage automata: they are an extension of
finite state automata (FSA) where the input alphabet is parametrized over resources. A
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policy � is represented by a template usage automaton A�(x). To enforce �, the usage
histories of each resource r must be accepted by the FSA A�(r), obtained by instanti-
ating A�(x) on r. For (ii), the semantics of a history expression is a set of histories: the
problem here is to equate those histories that only di�er in the name of fresh resources.
For (iii), the problem is to correctly record the binding of fresh names in history expres-
sions. Constructing the history expression of a program is a basic step in our approach:
indeed, checking that a program obeys the usage policies requires knowing all its pos-
sible histories in their entirety — history safety is not compositional. Technically, we
explore a novel approach to quantify types over freshly created resources — a sort of
polymorphism à la ML on both types and e�ects. We avoid using explicit binders in
types: the definition�use of resources is determined after the type & e�ect has been
inferred. Living without binders made the type and e�ect system simpler (and required
some little ingenuities in proofs). For (iv), the creation of new resources may give rise
to an infinite number of formulae to be inspected while verifying validity. We solve
this problem by suitably grouping resources with equivalent usage constraints. This
allows us to extract from a history expression a Basic Process Algebra [5] and a regular
formula, to be used in model-checking validity [9].

A key point of our proposal is that we o�er a comprehensive framework for safely
handling resources, within a linguistic setting. On the one hand, our calculus has an
expressive and flexible way to compose and enforce usage policies. On the other hand,
resource usage control is made feasible by suitably extending and integrating techniques
from type theory and model-checking.

2 Programming Model

We consider a call-by-value �-calculus enriched with primitives for creating and access-
ing resources, and with local usage policies. Resources r� r�� � � � � Res are system objects
that can be either statically available in Res0 � Res or created dynamically. We assume
that resources can be accessed through a given finite set of actions �� ��� � � � � Act. This
set is partitioned to reflect the kinds of resources, i.e. Act �

�
i Acti � File�Socket�� � � ,

where each element of the partition contains the actions admissible for the given kind
(e.g. File � �newFile� open� close� read�write�). The action newActi represents the creation
of a new resource of kind Acti. An event �(r) denotes accessing the resource r through
the action �. We assume a global capability environment �0 that maps each resource in
Res0 to the set of actions it admits. A history � is a sequence of access events.

Usage automata. Usage policies �� ��� � � � � Pol are regular properties of histories. Each
of them is modelled by a template usage automaton A�(x) � �Q� q0� qs� E�, which gives
rise to a FSA when the parameter x is instantiated to an actual resource r. As usual, Q
is a finite set of states, q0 � Q is the start state, while qs � Q is the final sink state, and

E is a finite set of template edges of the form q
�
	
 q�, where � � ��(x)� �(x̄)� �(r) � � �

Act � r � Res0 �. The wildcard x̄ stands for “any resource di�erent from x”.

Example 1. Consider a file usage policy � saying that only open files can be read or
written, and a security policy �� saying that, after having read a file you have not created,
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you can no longer connect to the network (a sort of “Chinese Wall” property). These
policies are described below by the template automata A�(x) (left) and A��(y) (right,
where the resource associated with the action connect is irrelevant).

qs

q1
read(x)

q0 write(x) connectq�

0 q�

1

qsq�

2

open(x)

close(x)

read(x)
write(x)

read(y)

newFile(y) read(y)

connect

read(y)

A template usage automaton is well-kinded when the resources r in its edges are
accessed according to the capability environment �0, i.e. an edge labelled �(r) requires
that � � �0(r). Also, the parameter x must be used consistently: for example, if x is
used as a file, e.g. in read(x), then it cannot be used also as a socket, or as a printer. To
this purpose, we define the kinding function:

	(�) � 	(�� � 

 � �x� x̄� : q
�(�)
			
 q� � E�(x) � 	(�) �

�������
Acti if 
i� � � � � Acti
� otherwise

and we require that 	(�) � � for all �. We assume our automata be always well-kinded.
Given a finite set of resources R, a template usage automaton A�(x) is instantiated

into a FSA A�(r�R) by binding x to the resource r � R (we simply write A�(r) when

unambiguous). Intuitively, a template edge q
�(x)
			
 q� results in a transition �q� �(r)� q��.

The instantiation A�(r�R) is �Q� q0� �� Æ� F�, where � � ��(r�) � � � Act � r� � R �,
F � �qs�, and the transition relation Æ : Q � � � Q is defined as follows:

Ǣ � ��q� �(r)� q�� � q
�(x)
			
 q� � � ��q� �(r�)� q�� � q 	
�(r�)q���

�

r��R��r�

��q� �(r�)� q�� � q
�(x̄)
			
 q��

Æ � Ǣ � � �q� �(r�)� q� �r� � R���q� �(r�)� q�� � Ǣ �� � �q� �(?)� q�� �

 : q
�(�)
			
q� �

In the first line we instantiate x to the given resource r, we maintain the transitions �(r�)
for r� � Res0, and we instantiate �(x̄) with all r� � r. In the second line we add self-
loops for all the events not explicitly mentioned in the template automaton. The last set
is only used in the verification phase; the meaning of the special symbol ? will be ex-
plained later. Note that finiteness of R and of Act guarantees that A�(r) is always a finite
state automaton. The assumption that R is finite causes no loss of generality, because
each time a template usage automaton is instantiated in �[ ] executions, the number of
resources occurring in the history is finite. We denote with �(�(r�R)) the language not
accepted by A�(r) — thus going into the sink state represents a violation of the policy.
Also, 
(�) stands for the set of actions and resources labelling the template edges.

The language �[ ] . The syntax of �[ ] comprises variables x� y� � � � � Var, resources
r� r�� � � � � Res, events �(e), abstractions �zx� e (where z within e stands for the whole
abstraction), applications e e�, conditional expressions �� b ���� e ���� e� (the definition
of guard b is irrelevant here), policy framings �[e], and resource creation ��� x : � �� e,
where � � Act is the set of capabilities associated with the new resource.
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Variables, resources, abstractions, and failures are the values v� v�� � � � of �[ ]. A fail-
ure fail � occurs when a computation is about to access a resource of the wrong kind. A
failure fail�(r) is raised when about to violate the policy �(r). Let fail denote both kinds
of failures. We assume that, for any expression e, policy �, and action �: fail � e fail �
fail e � �[fail ] � �(fail ). We write � for a fixed, closed, access-free, non-failure value,
and �� e for �x� e when x � fv(e) (x not free in e). The following abbreviations are
standard: e; e� � (�� e�) e, and ��� x � e �� e� � (�x� e�) e. We write � instead of �(r)
when the parameter r is immaterial. W.l.o.g. we assume that each framing has an open-
ing event, i.e. for all �[e], the expression e has the form �; e�, for some � and e�. The
opening event can be dummy, with no influence on usage policies.

We define the behaviour of �[ ] expressions through the following small-step opera-
tional semantics. A transition �� �� e 
 ��� ��� e� means that, starting from a history �

and capability environment�, the expression e may evolve to e� (possibly a failure), the
history � to �� and the capability environment � to ��. Initial configurations have the
form �� �0� e, where � denotes the empty history.

�� �� e1 
 ��� ��� e�
1

�� �� e1e2 
 ��� ��� e�
1e2

�� �� e2 
 ��� ��� e�
2

�� �� v e2 
 ��� ��� v e�
2

�� �� (�zx�e)v 
 �� �� e�v�x� �zx�e�z� �� �� �� b ���� ett ���� e� 
 �� �� e�(b)

�� �� e 
 ��� ��� e�

�� �� �(e) 
 ��� ��� �(e�)

� � �(r)

�� �� �(r) 
 ��(r)� �� �

� � �(r)

�� �� �(r) 
 �� �� fail �

�� �� e 
 ��� ��� e� �� �� �

�� �� �[e] 
 ��� ��� �[e�]

� �� �

�� �� �[v] 
 �� �� v

�� �� e 
 ��� ��� e� �� ���r �

�� �� �[e] 
 �� �� fail�(r)

�� �� ��� x : � �� e 
 � new�(�)(r)� � � ���r�� e�r�x� if 	(�) � �� r fresh

An access �(r) can be executed if the capabilities associated with r include the action
�, otherwise it generates a failure. A new resource r is created through the primitive
��� x : � �� e, which binds the scope of the fresh name r in e, and extends the capability
environment �. For conditionals, we assume as given a total function � that evaluates
the boolean guards. An expression �[e] can evolve to �[e�], provided that the resulting
history �� satisfies all the relevant instantiations �(r). A failure fail �(r) occurs when, for
some resource r, �(r) is violated by the extended history ��. Formally, let ��� be the
(longest) subsequence of � containing only the accessess �(r) such that � � 
(�), and
let R be the set of resources mentioned in ���. We say that a history � obeys a policy �,
in symbols � �� �, when ��� � �(�(r�R)) for each r � R. Similarly, we write � ���r �

when ��� � �(�(r�R)) for some r � R.

Example 2. Let � � newFile(r0) open(r0) write(r0) close(r0) open(r1) read(r1) connect,
and let �, �� be the file usage and Chinese Wall policies of Ex.1. Then, � �� �, because
��� � open(r0)write(r0)close(r0)open(r1)read(r1), R � �r0� r1� and so ��� � �(�(r0�R))�
�(�(r1�R)). Instead, � ���r1 �

�, because ���� � newFile(r0)read(r1)connect � �(��(r1�R)).
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3 Static Semantics

We statically predict the histories generated by programs at run-time through a type
and e�ect system, building upon [1,18]. The types extend those of the implicitly-typed
�-calculus, and the e�ects are history expressions, which over-approximate the aspects
of the program behaviour that are relevant for resource usage. History expressions in-
clude the empty �, events �(�), where � � Res�Nam��?� (n� n�� � � � � Nam are names,
to be instantiated to fresh resources, and ? is a wildcard for all names), resource binding
�n�H, sequencing H � H�, non-deterministic choice H � H�, policy framing �[H], and
recursion �h�H, where � binds the occurrences of h in H.

Histories. The intended meaning of a history expression is a set of histories, extended
to keep track of the policy framings through the special framing events [� and ]�, that
stand respectively for opening and closing the scope of the policy �. For example, an
(extended) history �[���]� represents a computation that (i) generates an access �, (ii)
enters the scope of a framing �[� � � ], (iii) generates �� within the scope of �, and (iv)
leaves the scope of �. Note that histories with no framing events were enough to give
the operational semantics of �[ ], where the role of framing events is played by framed
expressions. Hereafter, a history may end with the truncation marker ! � Act. The his-
tory �! represents a prefix of a possibly non-terminating computation that generates the
sequence of events �. We assume that histories are undistinguishable after truncation,
i.e. �! followed by �� equals to �!. A history � is balanced when either � is empty, or
� is an access event, or � �!, or � � [��� ]� with �� balanced, or � � ����� with both ��

and ��� balanced. For example, �[���[�����]�� ]� is balanced, while �[���[�����]� is not.
In what follows, we will only consider well-formed histories that are prefixes of some
balanced history. Non well-formed histories, like e.g. ]��, are not interesting, because
they do not correspond to any �[ ] computation.

The denotation of H � (�n� �(n)) � (�n� �(n)) will contain all the histories �(r)�(r�)
for r � r�. To this purpose we introduce template histories �n� �, where � may possibly
contain events of the form �(n), and � acts as a binder of the names in the finite set
n. Back to our example, the semantics of H is rendered by �n� n�� �(n)�(n�). Bound
names in template histories are �-convertible. We write � for ��� �, and �n��m� � for
�nm� �. A template history �n� � is balanced when � is such. Let � �� � range over
sets of balanced template histories (BTH for short) and let N(�) be the set of names
occurring in �. The set �[�] denotes [�� ]�. Also, we denote with �� � the set:

� �nm� ��� � �n� � � � ��m� �� � � �� n� N(��) � � � m� N(�) �

For example, since �n� �(n) can be �-converted to �m� �(m), then:

(�n� �(n)) (�n� �(n)) � (�n� �(n))(�m� �(m)) � �n�m� �(n)�(m)

Semantics of history expressions. The denotational semantics �H�� of history expres-
sions maps H to a set � of BTH, in an environment � that maps variables h to sets of
BTH. We assume that a truncated history always denotes all its truncated prefixes, i.e.,
whenever �n� ���! � � , then �n� �! � � .
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���� � ��� ��(r)�� � ��(r)� ��(?)�� � ��(?)� ��n� H�� � �n� �H��

��[H]�� � �[�H��] �H � H��� � �H�� �H��� �H � H��� � �H�� � �H���

�h�� � �(h) ��h�H�� �
�

k	0 f k(!) where f (X) � �H���X
h�

Example 3. Let H0 � �h� � � h� let H1 � �h� h � �� and let H2 � �h� �n� �(n) � h. Then,
�H0�� � ��!, i.e. H0 generates histories with an arbitrary number of �, and never ter-
minates. Instead, �H1�� � �!�, i.e. H1 loops forever, without generating events. The
semantics of H2 consists of all the histories �n1� � � � � nk� �(n1) � � ��(nk)!, for k � 0. ��

Equational theory. History expressions enjoy some equational properties. Intuitively,
the equation H � H� implies that �H�� � �H��� for all �. The operation� is associative,
commutative and idempotent; � is associative, has the identity �, and distributes over �.
The binders �n and �h can be rearranged, and �h can be introduced�eliminated when h
does not occur free. The � binder can be extruded when it does not bind free names (as
usual, n is free in H if it is not in the scope of a �n, otherwise it is bound). Note that
�n cannot be always lifted to the top-level: e.g., �h��n�H � �n��h�H in general, because
the leftmost history expression represents a loop that creates a new resource at each
iteration, while in the rightmost one the new resource is created just before entering
the loop. The last two rules allow for introduction�elimination of name binders, and for
�-conversion. The set N(H) denotes the names in H.

H � H � H (H � H�) � H�� � H � (H� � H��) H � H� � H� � H

(H � H�) � H�� � H � (H� � H��) � � H � H � H � �

H � (H� � H��) � H � H� � H � H�� (H � H�) � H�� � H � H�� � H� � H��

�n� �n�� H � �n���n�H �h� �h�� H � �h�� �h� H �[�n� H] � �n� �[H]

�n�(H � H�) � (�n�H) � H� if n � fn(H�) �n�(H � H�) � H � (�n�H�) if n � fn(H)

�n�(H � H�) � (�n�H) � H� if n � fn(H�) �h�H � H��h�H�h�

�n�H � H if n � fn(H) �n�H � �m�H�m�n� (capture-avoiding)

Note that we could replace the two constructs �n�H and �h�H with a single construct
�h��n�H, so defining a standard form for history expressions. For example, �h� (� �
�n� �n�� �(n) � h � �(n�)) can be rewritten as �h��n� �h���n�� � � �(n) � h � �(n�).

Unbound history expressions. Unbound history expressions are history expressions
without �-binders. Binding names in unbound history expressions is driven by the
events new. For instance, in the unbound H � new(n) � �(n) � new(m) � �(m) the event
new(n) binds the name n, while new(m) binds m, i.e. H is “bindified” to the history
expression (�n�new(n) � �(n)) � (�m�new(m) � �(m)).

Unbound history expressions have an equational theory �, which is a subtheory of
the relation � on history expressions. In particular, the last three equations (folding
�unfolding, introduction�elimination of � and �-conversion) are not permitted on un-
bound history expressions. Also, the right-distributivity of � over � has the side condi-
tion fn((H�H�) �H��) � fn(H �H���H� �H��). The definition of bound and free names in
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unbound history expressions slightly di�ers from the standard one: bn(new(n)) � �n�,
fn(new(n)) � �, fn(H � H�) � fn(H) � (fn(H�) � bn(H)). We also define the set rn(H) �
� n � H � �(�h� �n� H�)� h � fv(H�) � of recursive names in H, where �(�) is a context.

To obtain a history expression from an unbound one, we will now introduce the
bindify transformation�. This transformation will insert the � binders at the right points,
provided that the introduced scopes of names do not interfere dangerously. For instance,
� is undefined on the unbound history expression H � new(n) � new(n) � �(n), because
it is unclear whether the action � is performed on the resource n created first or the
second new). It is then not sound choosing the above H to approximate the histories of
e.g. e � ��� x �� ��� y ���(y), because new(r)new(r�)�(r�) is not represented by H.

�(�(�)) � �(�) if � � new �(new(n)) � �n� new(n) �(h) � h

�(H � H�) � �(H) � �(H�) if bn(H) � bn(H�) � �

�(H � H�) � �(H) � �(H�) �(�h� H) � �h� �(H) �(�[H]) � �[�(H)]

H � H� �

�������
�n� (H̄ � H�) if H � �n� H̄� n � rn(H)

H � H� if rn(H) � fn(H�) � �

H � H� �

�������
�n� (H̄ � H̄�) if H � �n� H̄� H� � �n� H̄�� n � rn(H � H�)

H � H� otherwise

The event new(n) drives the introduction of the actual binder �n in history expres-
sions: the scope of n in H is entered just before the new(n), and it is left as soon as
needed no longer, e.g. new(n) � (�h� � � new(n�) � �(n) � �(n�) � h) � �(n) is bindified into
(�n� new(n) � (�h� � � (�n�� new(n�) � �(n) � �(n�) � h)) � �(n)). Instead, � is not defined on
(�h� � � new(n) � h) � �(n), because the name n accessed through � could be any name
generated by the new inside the loop.

Type � E�ect system. We define below a type and e�ect system for �[ ]. E�ects H are
unbound history expressions. Types � comprise the unit 1, sets R � (Res�Nam)�2Act,

and arrows �
H
	
 �. For instance, a resource r with capabilities � has the singleton type

�(r� �)� (we omit the capabilities when irrelevant). Type environments have the form
�; � :� where � � Var � Res is not already in dom(�). A typing judgment �  e : � � H
means that, in a type environment �, the expression e evaluates to a value of type �, and

produces a history belonging to the e�ect H. In the functional type �
H
	
 ��, H describes

the latent e�ect associated with an abstraction, i.e. one of the histories represented by
H will be generated when such an abstraction is applied to a value.

To keep our type system as simple as possible, and still allowing to deal with the
escape of freshly created resources, we avoid to explicitly introduce binders on types.
Instead, we have raised the action new to the key role of an implicit binder. E.g., the type

1
new(n)	�(n)
								
 �n� is for a function that generates a fresh resource upon each invocation,

accesses it through the action �, and then returns it. The bindify transformation, together
with some side-conditions on the typing rules, ensure that the typing derivation do not
exploit the absence of explicit binders to identify names that should be kept distinct. As
a global invariant on typing derivations, we require that in a type & e�ect � � H, the
bound names of H are disjoint from those of � (i.e. the bound names in latent e�ects).
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The relation ! is used to define subtypes and sube�ects. Roughly, H ! H� means
that ��(H)� � ��(H�)� — when both �(H) and �(H�) are defined and closed. For
instance, �(H) ! �(H � H�), in any context �(H). The relation ! comprises a version
of folding�unfolding that creates fresh names upon unfolding (so not to prevent from
bindification). For example, if H � �h� new(n) � �(n) � h, then new(n�) � �(n�) � H ! H.
Subtypes are defined as usual, contravariant in the argument type and covariant in the
return type (the latent e�ect is invariant).

1 ! 1 R ! R� if R � R� �(n� �)� � R ! �(?� �)� � R �0
H
	
 ��0 ! �1

H
	
 ��1 if

�0 " �1

��0 ! ��1

H ! H� if H � H� H ! H � H� H���h� H�h� ! �h� H (� maps bn(H) into fresh names)

�(H) ! �(H�) if H ! H�� (bn(H) � bn(H�)) � N(�) � �� fn(�(H)) � fn(�(H�))

We now introduce the type and e�ect system for �[ ] . An access �(e) has type 1,
provided that the type of e is a set of resources R, and each resource in R has the
capability �. The e�ect of �(e) can be any of the accesses �(�) for (�� �) � R. The
e�ects in the rule for application are concatenated according to the evaluation order
of the call-by-value semantics (function, argument, latent e�ect). The side condition
ensures that the free names in the e�ect of the argument are not captured by the e�ect
of the function. The actual e�ect of an abstraction is the empty history expression,
while its latent e�ect is equal to the actual e�ect of the function body. Note that the rule
for abstraction constrains the premise to equate the actual and latent e�ects. A resource
creation generates a fresh name, and binds it in the e�ect through the event new. The last
two rules allow for weakening of types�e�ects and �-conversion, respectively. The side
condition # on weakening requires that names created through sube�ecting are disjoint

from the names in the type (e.g. the weakening 1
�(n)
			
 1 � � ! 1

�(n)
			
 1 � � � new(n)

is not permitted, because the new event would capture the free n in the type). Although
�-conversion is not permitted on unbound history expressions, we allow it on types, e.g.

1
new(n)	�(n)
								
 �n� can be �-converted to 1

new(m)	�(m)
									
 �m�.

�  e : R � H $(�� �) � R� � � �

�  �(e) : 1 � H � �(���)�R �(�)

� : � � �

�  � : � � �

�; x : �; z : �
H
	
 ��  e : �� � H

�  �zx�e : �
H
	
 �� � �

�  e : �
H��

		
 �� � H �  e� : � � H�

�  e e� : �� � H � H� � H��
bn(H) � fn(H�) � �

�  e : � � H

�  �[e] : � � �[H]

�; x : �(n� �)�  e : � � H 	(�) � �

��  ��� x : � �� e : � � new�(�)(n) � H

n � �

n � bn(�)
n � bn(H)

�  e : � � H �  e� : � � H

�  �� b ���� e ���� e� : � � H

�  e : � � H

�  e : �� � H�

� ! ��

H ! H� #
�  e : �

H
	
 �� � H�

�  e : �
H�
		
 ��� � H�

dom(�) � bn(H�) � �

� capture-avoiding

# (bn(H) � bn(H�)) � N(�) � � � (bn(H�) � bn(H)) � N(��)
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Example 4. We have the following typing judgements (see App. ?? for details):

�  �(��� x : � �� ��� y : ��
�� �� b ���� x ���� y) : 1

� H1 � new�(�)(n) � new�(��)(n
�) � (�(n) � �(n�)) if � � � � ��

�(H1) � �n� �n�� new�(�)(n) � new�(��)(n�) � (�(n) � �(n�))

�  ��� f � (�x� ��� n : � �� �(n); n) ����( f �; f �) : 1

� H2 � new�(�)(n) � �(n) � new�(�)(n�) � �(n�) � ��(n�) if �� �� � �

�(H2) � (�n� new�(�)(n) � �(n)) � (�n�� new�(�)(n
�) � �(n�) � ��(n�))

�  ��� g � (��� n : � �� �x� �(n); n) ����(g�; g�) : 1

� H3 � new�(�)(n) � �(n) � �(n) � ��(n) if �� �� � �

�(H3) � �n� new�(�)(n) � �(n) � �(n) � ��(n)

�  (�zx� ��� n : � �� �� b ���� �(n) ���� ��(n); zx) � : 1

� H4 � �h� new�(�)(n) � (�(n) � ��(n) � h) if �� �� � �

�(H4) � �h� �n� new�(�)(n) � (�(n) � ��(n) � h)

�  �((�zx� ��� n : � �� �� b ���� n ���� ��(n); zx) �) : 1

� H5 � (�h� new�(�)(n) � (� � ��(n) � h)) � �(?) if �� �� � �

�(H5) � (�h� �n� new�(�)(n) � (� � ��(n) � h)) � �(?)

Type safety. Let � � �1�2 � � � be a history. We define �
 as the history obtained from
� by erasing all the framing events, and �� as the set of all the prefixes of �, without !.
E.g., (���[����] 


� )� � (������)� � ��� �� ���� �������. Let �0 comprise r : �(r� �)� when-
ever (r� �) � �0. Our type and e�ect system correctly approximates the actual run-time
histories; as usual, precision is lost with conditionals and with recursive functions. Also,
you may lose the identity of names exported by recursive functions (see H5 above).

Theorem 1. Let�0  e : ��H,�(H) closed, and �� �0� e
��� �� e�. Then, � � ��(H)�
 �.

A valid history does not violate any resource usage constraint. Consider the security
policy �� of Ex.1: the history � � open(r)read(r)��[connect] is not valid, because the
connect occurs within a framing enforcing ��, and open(r)read(r)connect does not obey
��. To formally define validity, we introduce the notion of safe-sets. The history � above
has one safe-set: ��[�open(r)read(r)� open(r)read(r)connect�], meaning that the scope
of the framing ��[� � � ] encloses the two histories within the curly brackets. To have a
short, inductive definition of the safe-sets S (�) we first balance all the framings of �,
e.g. [�� becomes [��]� � �[�]. Then, we define:

S (�) � � S (� �(r)) � S (�) S (�0 �[�1]) � S (�0 �1) � �[�
0 (�
1)�]

A history � is valid when �[�] � S (�) implies �� �� � for all �� � � . Note that past
events cannot be hidden, because policy framings can always inspect the whole past
history. For example, a history �1�[�2]�3 is valid when �1 �� � and �1�2 �� � (even
if �1 is outside of the safety framing), while �1�2�3 is not required to satisfy � any
longer. A history expression H is valid when all the histories in �H� are such. Our type
and e�ect system guarantees the following type safety property.
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Theorem 2 (Type Safety). Let �0  e : � � H. Then:

(i) �� �0� e �� �� �� fail � (e respects capabilities)
(ii) if �(H) is valid, then �� �0� e �� �� �� fail�(r) (e respects the prescribed usages).

4 Static Verification

We verify the validity of history expressions by model-checking Basic Process Algebras
(BPAs) with finite state automata. The standard decision procedure for verifying that a
BPA process p satisfies a regular property � amounts to constructing the pushdown
automaton for p and the automaton for %�. Then, the property holds if the (context-
free) language accepted by the conjunction of the above, which is still a pushdown
automaton, is empty. This problem is known to be decidable, and several algorithms
and tools show this approach feasible [9].

A first problem, solved in [1], is that the arbitrary nesting of framings makes va-
lidity of histories a non-regular, property. For example, ��h� � � h � h � �[h]� denotes
histories with unbounded pairs of balanced [� and ]�, so it is a context-free, non-regular
language. In [1] we defined a regularization & of history expressions such that H is
valid if and only if each � � �H &� satisfies �[ ]. The formula �[ ] is defined through the
automaton A�[ ](x), a smooth transformation of A�(x) taking into account entering�leaving
the frame �[� � � ]. Hereafter, we assume that history expressions have been regularized
(a simple extension of [1] suÆces).

Example 5. The framed version of the file usage policy �(r) of Ex.1 is described by
the automaton A�[ ](r) below. The top (resp. bottom) layer models being outside (resp.
inside) the scope of �. All states have self-loops (not displayed in the figure) for the
irrelevant events. For instance, the history [�open(r) close(r) read(r) is not accepted.

q1q0

qs q�

1

close(r)

close(r)
write(r)

write(r)

[� ]�]�

qs̄

open(r)

open(r)

read(r)

read(r)

[� [�

q�

0

read(r)

write(r)

read(r)

write(r)

A second problem, solved here, is that now history expressions may create new names,
while BPAs cannot handle fresh names. Verifying validity would thus need to check an
unbounded set of policies �(r), e.g. the histories denoted by H � �[�h� � � �n��(n) � h]
must satisfy all the policies �(r0)� �(r1)� � � � for each fresh resource created within the
loop. Thus, we would have to intersect an infinite number of finite state automata to
verify H valid, which is unfeasible. As a first contribution, we extract from a history
expression H a BPA and a finite set of usage policies, that suÆce for verifying H valid.
The intuition is that a new resource r created under a �h lives for a single iteration of
the loop, and in the other iterations we do not care of the actual resources generated
(therefore we denote with these “dummy” resources). Formally, the function '(H)�
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takes as input a history expression H and a function � from history variables h to BPA
variables X. Its output is a guarded BPA process p, a finite set of definitions � for BPA
variables, and a finite set of usage policies � . Without loss of generality, we assume
that H is regularized, and that its variables are all distinct.

'(�)� � ��� �� �� '(h)� � ��(h)� �� ��

'(�(
))� � ��(
)� �� ��(
) � � � 
(�) � 	(���) � 	(�)�� 
 � Res � �?�

'(H0 � H1)� � �p0 � p1� �0 � �1� �0 � �1�� where '(Hi)� � �pi� �i� �i�

'(H0 � H1)� � �p0 � p1� �0 � �1� �0 � �1�� where '(Hi)� � �pi� �i� �i�

'(�[H])� � �[� � p � ]�� �� ��� where '(H)� � �p� �� ��

Access events, variables, concatenation and choice are mapped into the correspond-
ing BPA counterparts. An expression �[H] is mapped to the BPA for H, surrounded by
the opening and closing events of the �-framing. The tricky case is that of recursion and
new name generation, not shown above (the items � and � will indeed be populated and
exploited in the recursive case). We shall outline, with the help of the following exam-
ples, the stages that lead to the correct definition of '(H) in such cases.

The component � in '(H) contains the set of all the usage policies that are needed
in verifying the validity of H. Let R be the (finite) set of resources in the BPA of '(H).
For each event �(r) contained in '(H) (for r � ), the set � comprises all the policies
�(r�R) such that the kind of � is consistent with that of � (i.e. 	(�) � 	(���), and A�(x)

has some edge labelled with � (i.e. � � 
(�)).

Example 6. Consider the history expression H � �n� �n�� �(n) � �(n�) � �(?). Then, a
sound BPA for '(H) is �(r) � �(r�) � �(?) where r and r� are two distinct resources. For
instance, consider a policy �(x) saying that the action � cannot be performed twice on
the same resource (left-hand side of the figure below).

q1q0
�(x)�(x̄)

�(x̄)

qs

�(x)

�(x)

q1q0

�(?)
�(r)
�(?)

qs

�(?)
�(r)

�(r�)

�(?)
�(r� )

�(r� �r� r��)

Clearly, the above-mentioned BPA violates �(r) (right-hand side of the figure above),
consistently with the fact that the wildcard ? represents any resource, including r (e.g.
�(r)�(r�)�(r) � �H� violates �). Instead, the BPA above correctly respects a policy ��

requiring that � is not executed three times on the same resource. So, '(H) correctly
reflects violations and obeyance to the relevant policies. In this sense we can say that
'(H) is sound and complete (see Theorem 4 below).
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Example 7. Let H � �h� (�� �n� �(n) � h). A first, naı̈ve solution to obtain '(H) would
be that of picking out a resource r, and then modelling the BPA as a recursive process,
where at each step the event �(r) is executed (left-hand side of the picture below).

�(x)

q1

qs

q0

q2

�(x)

�(x)

�(x̄)

�(x̄)

�(x)

�(x̄)X

�

�(r) � X

q1

qs

q0

q2

�(?)
�(r)
�(?)

�(r� )

�(r�)
�(?) �(r)

�(r�)
�(?)

�(r)
�(?)

�(r� �r� r��)

However, this solution is not sound. To see why, consider a policy �(x) (modelled by the
template usage automaton A�(x) central in the picture above), saying that, for each re-
source x, the first event �(x) is necessarily followed by another �(x). Clearly, H violates
the policy (e.g. � � �(r)�(r�) � �H�, and � ��� �(r� �r� r��), see the instantiated automa-
ton on the right-hand side of the picture above). Instead, the BPA does not violate the
policy, and so it is unsound.

As a second try, consider a slight variation of the BPA above (left-hand side of the
picture below), where, at each step, one among the events �(r) or �(r�) can be executed.
This BPA correctly violates �(r� �r� r��) above.

q1q0
�(x)�(x̄)

�(x̄)

qs

�(x)

�(x)

q1q0

�(?)
�(r)
�(?)

X

�

�(r) � X

qs�(r�) � X

�(?)

�(?)
�(r)

�(r� �r�)

Although this solution is sound, it is not complete. Consider for instance the policy
�(x) saying that the action � cannot be performed twice on the same resource x (see the
template automaton in the center of the figure above). Although H obeys �, the BPA
does not: indeed, the BPA trace �(r)�(r) violates �(r� �r�) (the instantiated automaton
A�(r��r�) is depicted in the right-hand side of the picture above).

To recover completeness, we must ensure that the BPA does not execute the same
event �(r) twice. To do that, the BPA is composed of two loops: the first loop executes
�( ) on a dummy resouce , then, the BPA executes �(r) once, and finally the second
loop executes �( ) (see the left part in the figure below). Template automata are only
instantiated with the resource r (and not with ).

X

�

�( ) � X

�(r) � X�
�( ) � X�

�

This solution is both sound and complete. For soundness, the BPA correctly violates
�(r� �r� �), e.g. with the trace �(r)�( ). For completeness, the BPA respects �(r� �r� �)
(note that here it is important that �( ) is not considered).
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More generally, when H is a loop, then '(H) is a BPA which (i) runs the loop an
arbitrary number of times, substituting for the actual freshly generated resources, (ii)
runs a single iteration of the loop, using a unique instantiation of names, and (iii), runs
the same loop as (i). Special care is needed to avoid replication of the same names, e.g.
in case of nested recursion.

Example 8. Let �k require that no more than k files can be created, i.e. A�k(x) has states

q0� � � � � qk� qs and edges qi
newFile(�)
						
 qi�1 for i � 0��k	1 and qk

newFile(�)
						
 qs, for 
 � �x� x̄�.

Let H � �[�k[�h� � � �n� newFile(n) � open(n) � read(n) � close(n) � h]], where � is the
file usage policy of Ex.1. Then, '(H)� � �[��[�k �X�]�k �]�� �� ��(r)� �k(r)��, where �

comprises the following definitions (we abbreviate newFile with �n, read with �r , etc.):

X � � �
�
�n( ) � �o( ) � �r( ) � �c( ) � X

�
�
�
�n(r) � �o(r) � �r(r) � �c(r) � X�

�

X�
� � � �n( ) � �o( ) � �r( ) � �c( ) � X�

Note that each computation of the BPA �p� �� obeys the file usage policy �(r� �r� �),
while there exist computations that violate �k(r� �r� �).

We now state the correspondence between history expressions and BPAs. The prefixes
of the histories generated by a history expression H (i.e. �H��) are all and only the
strings that label the computations of the extracted BPA, after a renaming of resources.
A special case is that of ?, which may stand for any resource. To deal with it, we define
the “up-to-?” relation �? between histories: �? is the least reflexive relation such that,
for any r, �0�(r)�1 �? �

�
0�(?)��1 whenever �0 �? �

�
0 and �1 �? �

�
1.

Theorem 3. Let '(H)� � �p� �� ��. For each � � �H��, there exist �� � �p� �� and a
substitution � from Res to Res�� � such that �(�) �? �

� (�p� �� is the trace semantics).
Conversely, for each � � �p� ��, there exists some � and �� � �H�� such that �(��) �? �.

Example 9. Let H � �h� �n� ���(n)�h. Then, the BPA extracted from H is �X� ��, where
� � �X � � � �( ) � X � �(r) � X�� X�

� � � �( ) � X��. Let � � �(r0)�(r1)�(r2) � �H��,
and let �� � �( )�(r)�( ) be a string in �X� ��. If � � � �r0� r�r1� �r2�, then �(�) � ��.

The theorem above enables us to verify the validity of a (regularized) history expression
H by extracting '(H)� � �p� �� �� and then model-checking the BPA �p� �� against the
finite set of policies � . Indeed, a valid computation of the BPA is recognized by the in-
tersection of the finite state automata A�[ ](r), for all �(r) in � . Together with Theorem 2,
a �[ ] expression never goes wrong if its e�ect is checked valid.

Theorem 4. Let '(H)� � �p� �� ��. Then, H is valid i� �p� �� ��
	
��[ ](r) � �(r) � � �.

5 Related Work and Conclusions

We proposed a novel approach to the resource usage problem, within an extension of the
�-calculus that features creation�access to resources, and regular usage policies with a
local scope. To eÆciently enforce policies, we have exploited a two-step static analysis.



46 M. Bartoletti et al.

We defined a type and e�ect system that over-approximates the run-time behaviour of
a program as a history expression. In spite of the augmented flexibility given by the
nesting of policy scopes and by resource creation, we transformed history expressions
so that model checking their validity is decidable. Our technique manages to represent
the generation of an unbounded number of resources in a finitary manner. Yet, we do not
lose the possibility of verifying interesting properties of programs (see Ex. 9). When a
history expression is valid, we can safely dispose the execution monitor. Otherwise, the
soft-typing approach in [2] allows for substituting local checks for local policies, thus
making the dynamic control of accesses eÆcient. Although our policies can always
inspect the whole past history, one can easily limit the scope from the side of the past: it
suÆces to mark in the history the point in time �� from which checking a policy � has to
start; the corresponding automaton discards then all the events before ��. Type inference
has not been considered here, but we do not see major obstacles in extending [18] to
our case. Another research direction consists in extending �[ ] in a distributed setting, to
study secure discovery and composition of services [3].

Many authors [7,8,14,21] mixed static and dynamic techniques to transform pro-
grams and make them obey a given global policy. Colcombet and Fradet [7] abstracted a
program into an instrumented control flow graph, then minimized and converted back to
a program that is guaranteed to abort just before violating the property. Marriot, Stuckey
and Sulzmann [14] over-approximated the run-time behaviour of a program through a
context-free grammar. A finite-state automaton models the permitted resource usages.
If the language generated by the grammar is not included in the language accepted by
automaton, the program is instrumented with the local checks and the tracking opera-
tions needed to make it obey the policy, similarly to [2]. Our programming model allows
for local policies and access events parametrized over dynamically created resources,
while [7,8,14,21] only consider global policies and no parametrized events.

Igarashi and Kobayashi [12] extended the �-calculus with primitives for creating and
accessing resources, and for defining their permitted usage patterns. An execution is
resource-safe when the possible patterns are within the permitted ones. A type system
guarantees well-typed expressions to be resource-safe. However, they do not present
any algorithm to e�ectively check whether the inferred usages conform to the permitted
ones. Instead, here we provided �[ ] with a static verification technique; clearly, also [12]
might be amenable to static verification, if one restricts the language of permitted usages
to a decidable subset. Furthermore, the policies of [12] can only speak about the usage
of single resources, while ours can span over many resources, of di�erent kinds, e.g.
the Chinese Wall of Ex. 1.

Skalka and Smith [18] proposed a �-calculus with local checks that enforce linear
�-calculus properties [6,13] on the past history. A type and e�ect system approximates
the possible run-time histories, whose validity can be statically verified by model check-
ing �-calculus formulae over Basic Process Algebras [5,9]. Compared to [18], we fea-
ture dynamic resource creation, and local policies instead of local checks. On a more
concrete level, the same ideas are applied in [19] to define a type and e�ect system for
an extension of Featherweight Java, featuring histories and security checks.

Walker [22] mixed static and dynamic techniques with proof-carrying code [15].
Properties are specified by security automata [4,17]. When a security-unaware program
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is compiled, a centralized policy tells where to insert local checks, in order to obtain
provably-secure compiled code. An optimization phase follows: whenever a check is
removed, it is replaced by a proof that the optimized code is still safe. Before executing
a piece of code, a certified verifier ensures that it respects the centralized security policy.
Thus, compilers are no longer required to belong to the trusted computing base.

Acknowledgments. We thank Luı́s Caires and the anonymous referees for their com-
ments. Research partially supported by EU-FETPI Global Computing Project IST-2005-
16004 S������� (Software Engineering for Service-Oriented Overlay Computers).
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Abstract. In a seminal paper from 1985, Sistla and Clarke showed that
satisfiability for Linear Temporal Logic (LTL) is either NP-complete or
PSPACE-complete, depending on the set of temporal operators used. If,
in contrast, the set of propositional operators is restricted, the complexity
may decrease. This paper undertakes a systematic study of satisfiabil-
ity for LTL formulae over restricted sets of propositional and temporal
operators. Since every propositional operator corresponds to a Boolean
function, there exist infinitely many propositional operators. In order to
systematically cover all possible sets of them, we use Post’s lattice. With
its help, we determine the computational complexity of LTL satisfiabil-
ity for all combinations of temporal operators and all but two classes of
propositional functions. Each of these infinitely many problems is shown
to be either PSPACE-complete, NP-complete, or in P.

Keywords: computational complexity, linear temporal logic.

1 Introduction

Linear Temporal Logic (LTL) was introduced by Pnueli in [Pnu77] as a formalism
for reasoning about the properties and the behavior of parallel programs and
concurrent systems, and has widely been used for these purposes. Because of
the need to perform reasoning tasks — such as deciding satisfiability, validity, or
truth in a structure generated by binary relations — in an automated manner,
their decidability and computational complexity is an important issue.

It is known that in the case of full LTL with the operators F (eventually),
G (invariantly), X (next-time), U (until), and S (since), satisfiability and deter-
mination of truth are PSPACE-complete [SC85]. Restricting the set of temporal
operators leads to NP-completeness in some cases [SC85]. These results imply
that reasoning with LTL is difficult in terms of computational complexity.

This raises the question under which restrictions the complexity of these prob-
lems decreases. Since the semantics of LTL is rather fixed, such restrictions can
only be of syntactic nature. However, there are several possible constraints that
can be posed on the syntax. One possibility is to restrict the set of temporal
operators, which has been done almost exhaustively in [SC85].
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Another constraint is to allow only a certain “degree of propositionality” in
the language, i. e., to restrict the set of allowed propositional operators. Every
propositional operator represents a Boolean function — e. g., the operator ∧
(and) corresponds to the binary function whose value is 1 if and only if both
arguments have value 1. There are infinitely many Boolean functions and hence
an infinite number of propositional operators.

If these propositional restrictions are considered in a systematic way, this will
lead to a complete classification of the complexity of the reasoning problems for
LTL. Not only will this reveal all cases in which, say, satisfiability is tractable.
It will also provide a better insight into the sources of hardness by explicitly
stating the combinations of temporal and propositional operators that lead to
NP- or PSPACE-hard fragments. In addition, the “sources of hardness” will be
identified whenever a proof technique is not transferable from an easy to a hard
fragment.

The effect of propositional restrictions on the complexity of the satisfiabil-
ity problem was first considered by Lewis for the case of classical propositional
logic in [Lew79]. He established a dichotomy — depending on the set of proposi-
tional operators, satisfiability is either NP-complete or decidable in polynomial
time. In the case of modal propositional logic, a trichotomy has been achieved
in [BHSS06]: modal satisfiability is PSPACE-complete, coNP-complete, or in P.
That complete classification in terms of restriction on the propositional operators
follows the structure of Post’s lattice of closed sets of Boolean functions [Pos41].

This paper analyzes the same restrictions for LTL and combines them with
restrictions on the temporal operators. Using Post’s lattice, we examine the
satisfiability problem for every combination of temporal and propositional op-
erators. We determine the computational complexity of these problems, except
for one case — the one in which only propositional operators based on the binary
xor function (and, perhaps, constants) are allowed. We show that all remaining
cases are either PSPACE-complete, NP-complete, or in P.

It is not the aim of this paper to focus on particular propositional restrictions
that are motivated by certain applications. We prefer to give a classification as
complete as possible which allows to choose a fragment that is appropriate, in
terms of expressivity and tractability, for any given application.

Among our results, we exhibit cases with non-trivial tractability as well as
the smallest possible sets of propositional and temporal operators that already
lead to NP-completeness or PSPACE-completeness, respectively. Examples for
the first group are cases in which only the unary not function, or only monotone
functions are allowed, but there is no restriction on the temporal operators. As
for the second group, if only the binary function f with f(x, y) = (x ∧ y) is
permitted, then satisfiability is NP-complete already in the case of propositional
logic [Lew79]. Our results show that the presence of the same function f sepa-
rates the tractable languages from the NP-complete and PSPACE-complete ones,
depending on the set of temporal operators used. According to this, minimal sets
of temporal operators leading to PSPACE-completeness together with f are, for
example, {U} and {F,X}.
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The technically most involved proof is that of PSPACE-hardness for the lan-
guage with only the temporal operator S and the boolean operator f (Theo-
rem 3.3). The difficulty lies in simulating the quantifier tree of a Quantified
Boolean Formula (QBF) in a linear structure.

Our results are summarized in Table 1. The first column contains the propo-
sitional restrictions in terms of closed sets of Boolean functions (clones) whose
terminology is introduced in the following section. The second column shows the
classification of classical propositional logic as known from [Lew79] and [Coo71].
The last line in column 3 and 4 is largely due to [SC85]. All other entries are the
main results of this paper. The only open case appears in the third line and is
discussed in the Conclusion. Note that the case distinction also covers all clones
which are not mentioned in the present paper.

Table 1. Complexity results for satisfiability. The entries “trivial” denote cases in
which a given formula is always satisfiable. The abbreviation “c.” stands for “complete.”
Question marks stand for open questions.

temporal operators ∅ {F}, {G}, any other

function class (propositional operators) {F,G}, {X} combination

below R1 or below D trivial trivial trivial

below M or below N in P in P in P

L0, L in P ? ?

above S1
NP-c. NP-c. PSPACE-c.

BF (all Boolean functions) NP-c. NP-c. PSPACE-c.

2 Preliminaries

A Boolean function or Boolean operator is a function f : {0, 1}n → {0, 1}. We
can identify an n-ary propositional connector c with the n-ary Boolean operator
f defined by: f(a1, . . . , an) = 1 if and only if the formula c(x1, . . . , xn) becomes
true when assigning ai to xi for all 1 ≤ i ≤ n. Additionally to propositional
connectors we use the unary temporal operators X (next-time), F (eventually),
G (invariantly) and the binary temporal operators U (until), and S (since).

Let B be a finite set of Boolean functions and M be a set of temporal opera-
tors. A temporal B-formula over M is a formula ϕ that is built from variables,
propositional connectors from B, and temporal operators from M . More for-
mally, a temporal B-formula over M is either a propositional variable or of the
form f(ϕ1, . . . , ϕn) or g(ϕ1, . . . , ϕm), where ϕi are temporal B-formulae over
M , f is an n-ary propositional operator from B and g is an m-ary temporal
operator from M . In [SC85], complexity results for formulae using the temporal
operators F, G, X (unary), and U, S (binary) were presented. We extend these
results to temporal B-formulae over subsets of those temporal operators. The
set of variables appearing in ϕ is denoted with Vϕ. If M = {X,F,G,U, S} we call
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ϕ a temporal B-formula, and if M = ∅ we call ϕ a propositional B-formula or
simply a B-formula. The set of all temporal B-formulae over M is denoted with
L(M,B).

A model in linear temporal logic is a linear structure of states, which intu-
itively can be seen as different points of time, with propositional assignments.
Formally a structure S = (s, V, ξ) consists of an infinite sequence s = (si)i∈N

of distinct states, a set of variables V , and a function ξ : {si | i ∈ N} → 2V

which induces a propositional assignment of V for each state. For a temporal
{∧,¬}-formula over {X,U, S} with variables from V we define what it means
that S satisfies ϕ in si (S, si � ϕ): let ϕ1 and ϕ2 be temporal {∧,¬}-formulae
over {X,U, S} and x ∈ V a variable.

S, si � x if and only if x ∈ ξ(si),
S, si � ϕ1 ∧ ϕ2 if and only if S, si � ϕ1 and S, si � ϕ2,
S, si � ¬ϕ1 if and only if S, si � ϕ1,
S, si � Xϕ1 if and only if S, si+1 � ϕ1,
S, si � ϕ1Uϕ2 if and only if there is a k ≥ i such that S, sk � ϕ2,

and for every i ≤ j < k, S, sj � ϕ1,
S, si � ϕ1Sϕ2 if and only if there is a k ≤ i such that S, sk � ϕ2,

and for every k < j ≤ i, S, sj � ϕ1.

The remaining temporal operators are interpreted as abbreviations: Fϕ =
trueUϕ and Gϕ = ¬F¬ϕ. Therefore and since every Boolean operator can be
composed from ∧ and ¬, the above definition generalizes to temporal B-formulae
for arbitrary sets B of Boolean operators.

A temporal B-formula ϕ over M is satisfiable if there exists a structure S such
that S, si � ϕ for some state si from S. That allows us to define the problems we
want to look at in this paper: Let B be a finite set of Boolean functions and M a
set of temporal operators. Then SAT(M,B) is the problem to decide whether a
given temporal B-formula over M is satisfiable. In the literature, another notion
of satisfiability is sometimes considered, where we ask if a formula can be satisfied
at the first state in a structure. It is easy to see that, in terms of computational
complexity, this does not make a difference for our problems as long as we do
not have the temporal operator S in our language. For this paper, we only study
the satisfiability problem as defined above.

Sistla and Clarke analyzed the satisfiability problem for temporal {∧,∨,¬}-
formulae over some sets of temporal operators.

Theorem 2.1 ([SC85])

(1) SAT({F}, {∧,∨,¬}) is NP-complete.
(2) SAT({F,X}, {∧,∨,¬}), SAT({U}, {∧,∨,¬}), and SAT({U, S,X}, {∧,∨,¬})

are PSPACE-complete.

Since there are infinitely many finite sets of Boolean functions, we introduce
some algebraic tools to classify the complexity of the infinitely many arising
satisfiability problems. We denote with idnk the n-ary projection to the k-th
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variable, i.e., idnk (x1, . . . , xn) = xk, and with cna the n-ary constant function
defined by cna(x1, . . . , xn) = a. For c11(x) and c10(x) we simply write 1 and 0. A set
C of Boolean functions is called a clone if it is closed under superposition, which
means C contains all projections and C is closed under arbitrary composition
[Pip97]. For a set B of Boolean functions we denote with [B] the smallest clone
containing B and call B a base for [B]. In [Pos41] Post classified the lattice of
all clones and found a finite base for each clone.

With ⊕ we denote the binary exclusive or. Let f be an n-ary Boolean function.
We define some properties for f :

– f is 1-reproducing if f(1, . . . , 1) = 1.
– f is monotone if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is 1-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = 1

implies ai = 1.
– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
– f is linear if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ {0, 1} and variables
x1, . . . , xn.

In Table 2 we define those clones that are essential for this paper plus four
basic ones, and give Post’s bases [Pos41] for them. The inclusions between them
are given in Figure 1. The definitions of all clones as well as the full inclusion
graph can be found, for example, in [BCRV03].

Table 2. List of some closed classes of Boolean functions with bases

Name Definition Base

BF All Boolean functions {∨,∧,¬}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
M {f ∈ BF | f is monotone } {∨,∧, 0, 1}
S1 {f ∈ BF | f is 1-separating } {x ∧ y}
D {f | f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
L {f | f is linear} {⊕, 1}
L0 [{⊕}] {⊕}
V {f | There is a formula of the form c0 ∨ c1x1 ∨ · · · ∨ cnxn {∨, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
E {f | There is a formula of the form c0 ∧ (c1 ∨ x1) ∧ · · · ∧ (cn ∨ xn) {∧, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
N {f | f depends on at most one variable} {¬, 1, 0}
I {f | f is a projection or constant} {0, 1}
I2 {f | f is a projection} ∅

There is a strong connection between propositional formulae and Post’s lattice.
If we interpret propositional formulae as Boolean functions, it is obvious
that [B] includes exactly those functions that can be represented by B-formulae.
This connection has been used various times to classify the complexity of problems
related to propositional formulae: For example, Lewis presented a dichotomy for
the satisfiability problem for propositionalB-formulae: SAT(∅, B) is NP-complete
if S1 ⊆ [B], and solvable in P otherwise [Lew79].
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Fig. 1. Graph of some closed classes
of Boolean functions

Post’s lattice was applied for the equiv-
alence problem [Rei01], counting [RW05]
and finding minimal [RV03] solutions, and
learnability [Dal00] for Boolean formulae.
The technique has been used in non-classical
logic as well: Bauland et al. achieved a
trichotomy in the context of modal logic,
which says that the satisfiability problem
for modal formulae is, depending on the
allowed propositional connectives, PSPACE-
complete, coNP-complete, or solvable in P
[BHSS06]. For the inference problem for
propositional circumscription, Nordh pre-
sented another trichotomy theorem [Nor05].

An important tool in restricting the length
of the resulting formula in many of our reduc-
tions is the following lemma. It shows that
for certain sets B, there are always short for-
mulae representing the functions and , or , or not, respectively. Point (2) and (3)
follow directly from the proofs in [Lew79], point (1) is Lemma 3.3 from [Sch05].

Lemma 2.2

(1) Let B be a finite set of Boolean functions such that V ⊆ [B] ⊆ M (E ⊆ [B] ⊆
M, resp.). Then there exists a B-formula f(x, y) such that f represents x∨y
(x∧y, resp.) and each of the variables x and y occurs exactly once in f(x, y).

(2) Let B be a finite set of Boolean functions such that [B] = BF. Then there
are B-formulae f(x, y) and g(x, y) such that f represents x∨ y, g represents
x ∧ y, and both variables occur in each of these formulae exactly once.

(3) Let B be a finite set of Boolean functions such that N ⊆ [B]. Then there is
a B-formula f(x) such that f represents ¬x and the variable x occurs in f
only once.

3 Results

3.1 Hard Cases

The following lemma gives our general upper bounds for various combinations of
temporal operators. The proof of part (1) and (2) is a variation of the proof for
Theorem 3.4 in [BHSS06], where, using a similar reduction, an analogous result
for circuits was proved.

Lemma 3.1. Let B be a finite set of Boolean functions. Then the following holds:

(1) If M ⊆ {F,G,U, S,X}, then SAT(M,B) is in PSPACE,
(2) if M ⊆ {F,G}, then SAT(M,B) is in NP, and
(3) if M ⊆ {X}, then SAT(M,B) is also in NP.
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Proof. For (1), we will show that SAT(M,B) ≤log
m SAT({U, S,X} , {∧,∨,¬}), and

for (2), we will show that SAT(M,B) ≤log
m SAT({F} , {∧,∨,¬}). The complexity

result for these cases then follows from Theorem 2.1. The proof for case (3) is
omitted and given in [BSS+06].

The construction for (1) and (2) is nearly identical: Let ϕ be a formula with ar-
bitrary temporal operators and Boolean functions from B. We recursively trans-
form the formula to a new formula using only the Boolean operators ∧, ∨, and
¬, and the temporal operators U, S, and X for the first case and the temporal
operator F for the second case. For this we construct several formulae, which
will be connected via conjunction. Let k be the number of subformulae of ϕ.
Accordingly let ϕ1, . . . , ϕk be those subformulae with ϕ = ϕ1. Let x1, . . . , xk be
new variables, i.e., distinct from the input variables of ϕ. For all i from 1 to k
we make the following case distinction:

– If ϕi = y for a variable y, then let fi(ϕ) = xi ↔ y.
– If ϕi = Xϕj , then let fi(ϕ) = xi ↔ Xxj .
– If ϕi = Fϕj , then let fi(ϕ) = xi ↔ Fxj .
– If ϕi = Gϕj , then let fi(ϕ) = xi ↔ Gxj .
– If ϕi = ϕjUϕ�, then let fi(ϕ) = xi ↔ xjUx�.
– If ϕi = ϕjSϕ�, then let fi(ϕ) = xi ↔ xjSx�.
– If ϕi = g(ϕi1 , . . . , ϕin ) for some g ∈ B, then let fi(ϕ) = xi ↔ h(xi1 , . . . , xin),

where h is a formula using only ∧, ∨, and ¬, representing the function g.

Such a formula h always exists with constant length, because the set B is
fixed and does not depend on the input. Now let f(ϕ) = x1 ∧

∧k
i=1(Gfi(ϕ) ∧

¬(true S¬fi(ϕ))) for case (1) and f(ϕ) = x1∧
∧k
i=1 Gfi(ϕ) for case (2). The part

Gfi(ϕ) makes sure that fi(ϕ) holds in every future state of the structure and
¬(true S¬fi(ϕ))) does the same for the past states of the structure. Additionally
we consider x ↔ y as a shorthand for (x ∧ y) ∨ (¬x ∧ ¬y). For case (1) we
consider Fx as a shorthand for trueUx and Gx as a shorthand for ¬(trueU¬x),
and for case (2) we consider Gx as a shorthand for ¬F¬x. Thus we have that
f(ϕ) is from L({U, S,X}, {∧,∨,¬}) in case (1) and from L({F}, {∧,∨,¬}) in
case (2). Furthermore f is computable in logarithmic space, because the length
of fi is polynomial and neither ↔ nor the formulae h occur nested. In order to
show that f is the reduction we are looking for, we still need to prove that ϕ
is satisfiable if and only if f(ϕ) is satisfiable. Assume an arbitrary structure S,
such that S, si � f(ϕ) for some si. We first prove by induction on the structure
of the formula that xi holds if and only if ϕi holds in every state s of S (for
(1)) respectively in every state which lies in the future of si (for (2)). Therefore
for (1) let s be an arbitrary state and for (2) let s be an arbitrary state in the
future of si. Thus by construction of f(ϕ) the formulae fp(ϕ) hold at s for all
1 ≤ p ≤ k. Then the following holds:

– If ϕp = y for a variable y, then fp(ϕ) = xp ↔ y and trivially S, s � xp iff
S, s � y.

– If ϕp = Xϕj , then fp(ϕ) = xp ↔ Xxj . Thus S, s � xp iff for the successor
state s′ of s, we have S, s′ � xj . By induction this is equivalent to S, s′ � ϕj
and therefore S, s � ϕp iff S, s � xp.
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– The cases for the temporal operator F or G work analogously.
– If ϕp = ϕjUϕ�, then fp(ϕ) = xp ↔ xjUx�. Thus S, s � xp iff there exists a

state s′ in the future of s, such that S, s′ � x� and in all states sm in between
(including s) S, sm � xj . By induction this is equivalent to S, s′ � ϕ� and for
all states in between S, sm � ϕj and therefore S, s � ϕp iff S, s � xp.

– The case for the temporal operator S works analogously to U.
– If ϕp = g(ϕi1 , . . . , ϕin), then fp(ϕ) = xp ↔ h(xi1 , . . . , xin ), where h is a

formula using only ∧, ∨, and ¬, representing the function g. Thus S, s � xp
iff S, s � h(xi1 , . . . , xin ). Let I be the subset of In = {i1, . . . , in}, such that
S, s � xm for all m ∈ I and S, s � ¬xm for all m ∈ In \ I. By induction
S, s � ϕm for all m ∈ I and S, s � ¬ϕm for all m ∈ In \I and therefore S, s �
h(ϕi1 , . . . , ϕin ). Since h represents the function g, we have that S, s � ϕp iff
S, s � xp.

Now, assume that f(ϕ) is satisfiable. Then there exists a structure S, si � f(ϕ)
and thus S, si � x1. Since in every state xj holds if and only if ϕj holds, we have
that S, si � ϕ = ϕ1. For the other direction, assume that ϕ is satisfiable. Then
there exists a structure S, si � ϕ = ϕ1. Now we can extend S by adding new
variables x1, . . . , xk in such a way, that xj holds in a state s from S if and only if
ϕj holds in that state. Call this new structure S′. Then by construction of f(ϕ),
we have S′, si � f(ϕ), since in every state xj holds if and only if ϕj holds. �

The following two theorems show that the case in which our Boolean operators
are able to express the function x ∧ y, leads to PSPACE-complete problems in
the same cases as for the full set of Boolean operators. This function already
played an important role in the classification result from [Lew79], where it also
marked the “jump” in complexity from polynomial time to NP-complete.

Theorem 3.2. Let B be a finite set of Boolean functions such that S1 ⊆ [B].
Then SAT({G,X}, B) and SAT({F,X}, B) are PSPACE-complete.

Proof. Since we can express F using G and negation, Theorem 2.1 implies that
SAT({G,X}, {∧,∨,¬}) and SAT({F,X}, {∧,∨,¬}) are PSPACE-hard. Now, let
ϕ be a formula in which only temporal operators G and X, or F and X, and
the Boolean connectives ∧,∨, and ¬ appear. Let B′ = B ∪ {1}. The complete
structure of Post’s lattice [BCRV03] shows that [B′] = BF. Now we can rewrite ϕ
as a B′-formula with the same temporal operators appearing. Due to Lemma 2.2,
we can express the crucial operators ∧,∨,¬ with shortB′-formulae, i.e., formulae
in which every relevant variable occurs only once. Therefore, this transformation
can be performed in polynomial time. Now, in the B′-representation of ϕ, we
exchange every occurrence of 1 with a new variable t, and call the result ϕ′, which
is a B-formula. It is obvious that ϕ is satisfiable if and only if the B-formula
ϕ′ ∧ t ∧ Gt is. Since B ⊇ S1, we can express the occurring conjunctions using
operators from B (since these are a constant number of conjunctions, we do
not need to worry about needing long B-formulae to express conjunction). This
finishes the proof for SAT({G,X}, B). For the problem SAT({F,X}, B), observe
that the function g(x, y) = x ∧ y generates the clone S1, and therefore there is
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some B-formula equivalent to g. Now observe that the formula t ∧ F(t ∧ Xt) =
g(t,F(g(t,Xt))) is equivalent to Gt. Since this formula is independent of the
input formula ϕ, this can be computed in polynomial time, and therefore this
formula can be used to express ϕ′ ∧ t ∧ Gt in the same way as in the first
case. Additionally, observe that if the operator F appears in the original formula
ϕ, then a subformula Fψ can be expressed as (1Uψ). Hence we conclude from
Theorem (2) that SAT({U,X},BF) is PSPACE-complete. �

The construction in the proof of Theorem 3.2 does not seem to be applicable to
the languages with U and/or S, as it requires a way to express Gt using these
operators. Hence, proving the desired completeness result requires significantly
more work.

Theorem 3.3

(1) Let B be a finite set of Boolean functions with [B] = BF. Then SAT({S}, B)
is PSPACE-complete.

(2) Let B be a finite set of Boolean functions with S1 ⊆ [B]. Then SAT({S}, B)
and SAT({U}, B) are PSPACE-complete.

Proof. Since the membership for PSPACE is shown in Lemma 3.1 we only need
to show hardness.

(1) We first prove an auxiliary proposition.

Claim. Let ϕ1, . . . , ϕn be satisfiable propositional formulae such that ϕi → ¬ϕj
is true for all i, j ∈ {1, . . . , n} with i �= j. Then the formula

ϕ = ϕ1 ∧ (ϕ1S(ϕ2S(. . . S(ϕn−1Sϕn) . . . ))) ∧ ((. . . ((ϕ1Sϕ2)Sϕ3)S . . . )Sϕn)

is satisfiable and every structure S that satisfies ϕ in a state sm fulfills the
following property: there exist natural numbers 0 = a0 < a1 < · · · < an ≤ m+ 1
such that m− ai < j ≤ m− ai−1 implies S, sj � ϕi for every i ∈ {1 . . . , n}.

Proof. Clearly ϕ is satisfiable: since all formulae ϕi are satisfiable we can find a
structure S such that S, s0 � ϕn, S, s1 � ϕn−1, . . . , S, sn−1 � ϕ1. One can verify
that S satisfies ϕ in sn−1.

Let S be a structure that satisfies ϕ in a state sm. Since ϕi → ¬ϕj is true
for all i, j ∈ {1, . . . , n} with i �= j, in every state only one of the formulae ϕi
can be satisfied by S. Therefore and since S, sm � ϕ1S(ϕ2S(. . . S(ϕn−1Sϕn) . . . ))
holds, there are natural numbers 0 = a0 ≤ a1 ≤ · · · ≤ an−1 < an ≤ m+ 1 such
that m − ai < l ≤ m − ai−1 implies S, sl � ϕi for every i ∈ {1 . . . , n}. Since
S, sm � ϕ1, it holds that a1 > 0. Because S, sm � (. . . ((ϕ1Sϕ2)Sϕ3)S . . . )Sϕn we
conclude that a1 < · · · < an−1, which proves the claim. �

To show hardness for PSPACE, we reduce QBF, which is PSPACE-complete due
to [Sto77], to SAT({S}, B). Let ψ = Q1x1 . . . Qnxnϕ for some propositional
{∧,∨,¬}-formula ϕ with variables x1, . . . , xn and for quantifiers Q1, . . . , Qn ∈
{∀, ∃}.
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Let I∀ = {p1, . . . , pk} = {i ∈ {1, . . . , n} | Qi = ∀} and I∃ = {q1, . . . , ql} = {i ∈
{1, . . . , n} | Qi = ∃} such that p1 < · · · < pk and q1 < · · · < ql.

We construct a temporal formula ψ′ ∈ L({S}, B) such that ψ is valid if and
only if ψ′ is satisfiable. Let t0, . . . , tn, u0, . . . , un be new variables. We construct
subformulae of ψ′ which we will combine afterwards.

α = u0 ∧ t0 ∧ (u0 ∧ t0)S((u0 ∧ t0)S(u0 ∧ t0))) ∧ (((u0 ∧ t0)S(u0 ∧ t0))S(u0 ∧ t0))

β1[i] =

(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))))

β2[i] =

(((((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)

γ1[i] = (ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))

γ2[i] = (ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))

Since [B] = BF and due to Lemma 2.2, there exist short B-representations for
∧,∨ and ¬. Let ϕ′ be a copy of ϕ that uses these representations instead of
∧,∨ and ¬. Due to the short representations, ϕ′ can be computed in polynomial
time. We now define the formula ψ′, which constitutes the reduction.

ψ′ = α ∧
∧

i∈I∀
((β1[i] ∧ β2[i])S t0) ∧

∧

i=∈I∃
((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′S t0)

Since the operators ∧,∨, and ¬ are nested only in constant depth we can use
their B-representations without increasing the size of ψ′ significantly.

Assume that S is a structure that satisfies ψ′ in a state sm. We prove by
induction over n that there are natural numbers 0 = a0 < · · · < a3(2k) ≤ m+ 1
and for every q ∈ I∃ a function σq : {0, 1}q−1 → {0, 1} such that S satisfies the
following property: if m− ai < j ≤ m− ai−1, then

1. S, sj � xph
iff � i

3(2k−h)� is even
2. S, sj � xqh

iff σqh
(a1 . . . , aqh−1) = 1 where -ad = 1 if xd ∈ ξ(sj) and ad = 0

otherwise
3. S, sj � t0 iff i = 3(2k)
4. S, sj � tph

iff i = c · 3(2k−h) for some c ∈ N

5. S, sj � tqh
iff S, sj � tph−1

6. S, sj � u0 iff i = 1
7. S, sj � uph

iff i = c · 3(2k−h) + 1 for some c ∈ N

8. S, sj � uqh
iff S, sj � uph−1
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Note that due to point 1 for every possible assignment π to {xp1 , . . . , xpk
} there

is a j ∈ {m−a3(2k)+1, . . . ,m} such that S, sj � xpi if and only if π(xpi ) = 1.
This is the main feature of the construction. The other variables ti and ui are
necessary to ensure this condition.

For n = 0 it holds that ψ′ = α∧ (ϕ′S t0). Since α satisfies the prerequisites of
the auxiliary proposition, there exist natural numbers 0 = a0 < a1 < a2 < a3 ≤
m+ 1 such that
• m− a1 < j ≤ m− a0 implies S, sj � u0 ∧ t0
• m− a2 < j ≤ m− a1 implies S, sj � u0 ∧ t0
• m− a3 < j ≤ m− a2 implies S, sj � u0 ∧ t0

The only occurring variables are u0 and t0 and it is easy to see that the above
property holds for both.

For the induction step assume that n > 1 and the claim holds for n − 1.
There are two cases to consider:
Case 1: Qn = ∀. That means

ψ′ = α ∧
∧

i∈I∀\{n}
((β1[i] ∧ β2[i])S t0) ∧

∧

i∈I∃
((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′S t0)

∧ ((β1[n] ∧ β2[n])S t0)

It follows that there are natural numbers 0 = a0 < · · · < a3(2k−1) ≤ m + 1
and for every q ∈ I∃ a function σq : {0, 1}q−1 → {0, 1} such that S fulfills the
properties of the claim (note that the subformula (ψ′S t0) is not necessary for
our argument). Since S, sm � (β1[n]∧β2[n])S t0 and for m− a3(2k−1) < j ≤ m it
holds that S, sj � t0 if and only if j ≤ m−a3(2k−1)−1, we have S, sj � β1[n]∧β2[n]
for every m−a3(2k−1)−1 < j ≤ m. Let i = c ·3 for some c ∈ N, then it holds that
m − ai+1 < j ≤ m − ai implies S, sj � un−1 which means that for these states
sj it holds that S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn. Due to our proposition there
are natural numbers 0 = bi0 < bi1 < · · · < bi6 ≤ ai + 1 such that

• ai − bi1 < j ≤ ai − bi0 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn
• ai − bi2 < j ≤ ai − bi1 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn
• ai − bi3 < j ≤ ai − bi2 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn
• ai − bi4 < j ≤ ai − bi3 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn
• ai − bi5 < j ≤ ai − bi4 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn
• ai − bi6 < j ≤ ai − bi5 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

The nearest state before sm−ai that satisfies un−1 is sm−ai+1 and the nearest
state before sm−ai that satisfies tn−1 is sm−ai+2 , therefore it holds that bi1 =
ai+1 − ai and bi5 = ai+2 − ai. By denoting bij + ai with c2i+j we define natural
numbers c0, . . . , c3(2k) for which it can be verified that they fulfill the claim.
Case 2: Qn = ∃. In this case we have

ψ′ = α ∧
∧

i∈I∀
((β1[i] ∧ β2[i])S t0) ∧

∧

i∈I∃\{n}
((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′S t0)

∧ ((γ1[n] ∨ γ2[n])S t0).
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sm−a3·(2k)

sm−a3·(2k−1)+2

sm−a3·(2k−1)+1

sm−a3·(2k−1)

sm−a3·(2k−2)+2

sm−a3·(2k−2)+1

sm−a3·(2k−2)

sm−a3·(2k−3)+2

sm−a3·(2k−3)+1

sm−a3·(2k−3)

sm−a3·(2k−4)+2

sm−a3·(2k−4)+1

sm−a3·(2k−4)
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sm−a5

sm−a4
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sm−a2
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{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

tp0 . . . tn

upk
. . . un

tpk
. . . tn

upk−1 . . . un

tpk−1 . . . tn

upk
. . . un

tpk
. . . tn

upk−2 . . . un

tpk−1 . . . tn

upk
. . . un

tpk
. . . tn

u0 . . . un

Fig. 2. Structure for the proof of Theorem 3.3
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Because of the induction hypothesis there are natural numbers 0 = a0 < a1 <
· · · < a3(2k) ≤ m+ 1 such that the required properties are satisfied. Analogously
to the first case S, sj � γ1[i] ∨ γ2[i] is true for every m − a3(2k) < j ≤ m. Let
i = c · 3, then for m − ai+1 < j ≤ m − ai it holds that S, sj � un−1 ∧ tn−1 ∧
un ∧ tn ∧ xn or S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn, because S, sj � un−1. For
m − ai+2 < j ≤ m − ai+1 we have that S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn or
S, sj � ui−n ∧ ti−n ∧ un ∧ tn ∧ xn and for m− ai+3 < j ≤ m− ai+2 it must hold
S, sj � un−1∧tn−1∧un∧tn∧xn or S, sj � un−1∧tn−1∧un∧tn∧xn. If S, sai � γ1[n],
then in all these states xn is satisfied; if S, sai � γ2[n], then xn is. Therefore
with σn defined by σn(d1, . . . , dn−1) = 1 if and only if S, s3(d12n−2+···+dn−120) �
γ2[n], the induction is complete, because the binary numbers correspond to the
assignments to the ∀-quantified variables.

Note that for a structure that satisfies ψ′ with the above notation, S, sj � ϕ
holds for every m− a3(2k) < j ≤ m, since ϕ′S t0 is a conjunct of ψ′.

Now assume that ψ′ is satisfiable in a state sm of a structure S. This is if and
only if for every q ∈ I∃ there is a function σq : {0, 1}q−1 → {0, 1} such that S
fulfills the above property. Hence each possible assignment J to the ∀-quantified
variables {xp1 , . . . , xpk

} can be extended to an assignment to {x1, . . . , xn} by
J(xqi ) = σqi (J(x1), . . . , J(xqi−1)) which is equivalent to the validity of ψ.

(2) The above reduction can be modified using ideas from the proof of Theo-
rem 3.2. The details are omitted and given in [BSS+06]. We can prove PSPACE-
hardness for SAT({U}, B) with an analogous construction. �

The following proposition follows immediately from a result of Lewis’s [Lew79]
and the previously established upper bounds.

Proposition 3.4. Let B be a finite set of Boolean functions with S1 ⊆ [B]. Then
SAT({F}, B), SAT({G}, B), SAT({F,G}, B), and SAT({X}, B) are NP-complete.

3.2 Polynomial Time Results

This subsection lists all cases for which LTL satisfiability can be decided in
polynomial time. Due to the limitations of space, the proofs are omitted and can
be found in the report [BSS+06].

As Theorem 3.5 shows, for some sets B of Boolean functions, there is a sat-
isfying model for every temporal B-formula over any set of temporal operators.

Theorem 3.5. Let B be a finite subset of R1 or D. Then every formula ϕ from
L({F,G,X,U,S}, B) is satisfiable.

Due to Theorem 3.6, satisfiability for formulae with any combination of modal
operators, but only very restricted Boolean operators is always easy to decide.

Theorem 3.6. Let B be a finite subset of N or M. Then SAT({F,G,X,U, S}, B)
can be decided in polynomial time.
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Finally, satisfiability for formulae that have X as a modal operator and the xor
function ⊕ as a propositional operator is in P. This is true because functions
described by these formulae have a high degree of symmetry.

Theorem 3.7. Let B be a finite subset of L. Then SAT({X}, B) can be decided
in polynomial time.

4 Conclusion

We have almost completely classified the computational complexity of satisfiabil-
ity for LTL with respect to the sets of propositional and temporal operators per-
mitted. The only case left open is the one in which only propositional operators
constructed from the binary xor function (and, perhaps, constants) are allowed.
This case has already turned out to be difficult to handle — and hence was left
open — in [BHSS06] for modal satisfiability under restricted frames classes. The
difficulty here and in [BHSS06] is reflexivity, i. e., the property that the formula
Fϕ is satisfied at some state if ϕ is satisfied at the same state. This does not allow
for a separate treatment of the propositional part (without temporal operators)
and the remainder of a given formula.

Our results bear an interesting resemblance to the classifications obtained in
[Lew79] and in [BHSS06]. In all of these cases (except for one of the several
classifications obtained in the latter), it turns out that sets of Boolean functions
B which generate a clone above S1 give rise to computationally hard problems,
while other cases seem to be solvable in polynomial time. Therefore, in a precise
sense, it is the function represented by the formula x∧y which turns problems in
this context computationally intractable. These hardness results seem to indicate
that x ∧ y and other functions which generate clones above S1 have properties
that make computational problems hard, and this notion of hardness is to a large
extent independent of the actual problem considered.

It is worth knowing whether our results are transferable to what is called
“determination of truth” in [SC85] — the model checking problem. In the case
of LTL with no restrictions on the propositional operators, model checking has
the same complexity as satisfiability [SC85]. We have done first steps towards a
similar classification of this problem. The first partial results suggest that the
behavior of model checking is not quite the same as that of satisfiability.

The results from this paper leave two open questions. Besides the unsolved
xor case, it would be interesting to further classify the polynomial-time solvable
cases. Further work could also examine related specification languages, such as
CTL, CTL∗, or hybrid temporal languages.
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Formalising the π-Calculus Using Nominal Logic

Jesper Bengtson and Joachim Parrow
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Abstract. We formalise the pi-calculus using the nominal datatype
package, a package based on ideas from the nominal logic by Pitts et
al., and demonstrate an implementation in Isabelle/HOL. The purpose
is to derive powerful induction rules for the semantics in order to con-
duct machine checkable proofs, closely following the intuitive arguments
found in manual proofs. In this way we have covered many of the stan-
dard theorems of bisimulation equivalence and congruence, both late and
early, and both strong and weak in a unison manner. We thus provide
one of the most extensive formalisations of a process calculus ever done
inside a theorem prover.

A significant gain in our formulation is that agents are identified up to
alpha-equivalence, thereby greatly reducing the arguments about bound
names. This is a normal strategy for manual proofs about the pi-calculus,
but that kind of hand waving has previously been difficult to incorporate
smoothly in an interactive theorem prover. We show how the nominal
logic formalism and its support in Isabelle accomplishes this and thus
significantly reduces the tedium of conducting completely formal proofs.
This improves on previous work using weak higher order abstract syntax
since we do not need extra assumptions to filter out exotic terms and
can keep all arguments within a familiar first-order logic.

1 Introduction

1.1 Motivation

As the complexity of software systems increases, the need is growing to ensure
their correct operation. One way forward is to create particular theories or frame-
works geared towards particular application areas. These frameworks have the
right kind of abstractions built in from the beginning, meaning that proofs can
be conducted at a high level. The drawback is that different areas need different
such frameworks, resulting in a proliferation and even abundance of theories. A
prime example can be found in the field of process calculi. It originated in work
by Milner in the late 1970s [8] and was intended to provide an abstract way
to reason about parallel and communicating processes. Today there are many
different strands of calculi addressing specific issues. Each of them embodies a
certain kind of abstraction suitable for a particular area of application.

For each such calculus a certain amount of theoretical groundwork must be
laid down. Typical examples include definitions of the semantics, establishing
substitutive properties, structures for inductive proof strategies etc. This ground-
work must naturally be correct beyond doubt (if there is an error in it then all

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 63–77, 2007.
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proofs conducted in that calculus will be incorrect). The idea to use formal ver-
ification of the groundwork itself is therefore natural. In this paper we shall
present an improved method to accomplish this.

1.2 Approach

The goal of our project is to provide a library in an automated theorem prover,
Isabelle/HOL [11], which allows users to do machine checked proofs on the ground-
work of process calculi. The guiding principle is that the proofs should correspond
very closely to the traditional manual proofs present in the literature. This means
that for a person who has completed these proofs manually very little extra effort
should be required in order to let Isabelle check them. Today those proofs are rea-
sonably well understood, but capturing them in a theorem prover has until now
been a daunting task. The reason is mainly related to bound names and the desire
to abstract away from α-equivalence [1].

In the literature it is not uncommon to find statements such as: “henceforth we
shall not distinguish between α-equivalent terms” or “we assume bound names
to always be fresh”, even though it is left unsaid exactly what this means. This
kind of reasoning does not necessarily imply that proofs conducted in this manner
are incorrect, but for a full formal formalisation of a system involving binders, a
solid mathematical foundation where α-equivalence is clearly defined has to be
created.

Our approach is to formulate the π-calculus using ideas from nominal logic
developed by (Pitts et al. [13,5,17]). This is a first order logic designed to work
with calculi using binders. It maintains all the properties of a first order logic and
introduces an explicit notion of freshness of names in the terms. Gabbay’s thesis
[3] uses it to introduce FM set theory, this is the standard ZF set theory but with
an extra axiom for freshness of names. Recent work by Urban and Tasson [19]
extends the work done by Pitts and Gabbay and solves the problem with fresh-
ness without introducing new axioms. The techniques have been implemented
into the theorem prover Isabelle/HOL, in a nominal datatype package, so that
when defining nominal datatypes, Isabelle will automatically generate a type
which models the datatype up to α-equivalence as well as induction principles
and a recursion combinator which allows the user to create functions on nominal
datatypes.

1.3 Results

Our contribution is to use this nominal package in Isabelle to describe the
π-calculus. We have proved substantial portions of [9] using these techniques.
More specifically, we have proven that strong equivalence and weak congruence
are congruence relations for both late and early operational semantics, that all
structurally congruent terms are bisimilar and that late strong equivalence, weak
bisimulation and weak congruence are included in their early counterparts. To
our knowledge, properties about weak equivalences of the π-calculus have never
before been formally derived inside a theorem prover. Our proof method is to
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lift the strong operational semantics to a weak one, enabling us to port our
proofs between the two semantics. Moreover, our proofs follow their pen-and-
paper equivalents very closely inside a first-order environment. In other words,
the extra effort to have proofs checked by a machine is not prohibitive.

1.4 Exposition

In the next section we explain some basic concepts of the nominal datatype
package. We do not give a full account of it, only enough that a reader may follow
the rest of our paper. In Sections 3–7 we demonstrate how the π-calculus syntax,
semantics, and bisimulation equivalences are represented in our framework. In
the concluding section we compare our efforts to related work and comment
on planned further work. An extended version of this paper together with the
Isabelle source files can be found at http://www.it.uu.se/katalog/jesperb/pi.

2 The Nominal Datatype Package

For a more thorough presentation of the nominal datatype package the reader is
referred to [19], but enough basic definitions will be covered here for the reader
to understand the rest of this paper. A nominal datatype definition is like an
ordinary data type but it explicitly tags the binding occurrences of names. For
example, a data type for λ-calculus terms would in this way tag the name in
the abstraction. The point is that the nominal package in Isabelle automatically
generates induction rules where α-equivalent terms are identified, thus saving
the user much tedium in large proofs.

At the heart of nominal logic is the notion of name swapping. If T is any term
of permutation type (a term which supports permutations of its names) and a
and b are names then (a b) • T denotes the term where all instances of a in T
become b and vice versa. All names (even the binding and bound occurrences)
are swapped in this way. A permutation p is a finite sequence of swappings.
If p = (a1 b1) · · · (an bn) then p • T means applying all swappings in p to T ,
beginning with the last element (an bn).

Permutations are mathematically well behaved. They very rarely change the
properties of a term. Most importantly, α-equivalence is preserved by permuta-
tions. The property of being preserved by permutations is often called equivariance.
We shall mainly use equivariance on binary relations, where the definition is:

Definition 1. Equivariance
eqvt R def= ∀p T U. (T, U) ∈ R =⇒ (p • T, p • U) ∈ R

Another key concept is the notion of support. The definition, in general, is that
the support supp T of a term T is the set of names which can affect T in
permutations. In other words, if p is a permutation only involving names outside
the support of T then p • T = T . Remembering that α-equivalent terms are
identified we see that the support corresponds to the free names in calculi like
the λ-calculus.
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A crucial property is that the support of a term is finite. This implies that for
any term it is always possible to find a name outside its support. One says that
a name a is fresh for a term T , written a � T , if a is not in the support of T .

Permutations can be used to capture α-equivalence. Let [x].P stand for any
operator that binds x in T .

Proposition 1. [x].T = [y].U =⇒
(x = y ∧ T = U) ∨ (x �= y ∧ x � U ∧ T = (x y) • U)

If [x].T = [y].U then either x and y are equal and T and U are α-equivalent or x
is not equal to y and fresh in U and T is α-equivalent to U with all occurrences
of x swapped with y and vice versa. Another way to capture α-equivalence is
the following:

Proposition 2. c � (x, y, T, U) ∧ [x].T = [y].U =⇒ (x c) • T = (y c) • U
Here and in the rest of the paper we use the word “proposition” for something
that Isabelle generates automatically.

3 Defining the π-Calculus

We present a version of the monadic π-calculus [9]. We assume that the reader
is familiar with the basic ideas of its syntax and semantics.

Definition 2. Defining the π-calculus in Isabelle

nominal_datatype pi = PiNil
| Tau pi
| Input name "<<name>> pi"
| Output name name pi
| Match name name pi
| Sum pi pi
| Par pi pi
| Res "<<name>> pi"
| Bang pi

This definition is an example of Isabelle syntax. The notation �name	 pi in-
dicates that name is bound in pi . For the rest of the paper we shall use the
traditional syntax for π-calculus terms, e.g. writing inputs as a(x) and restric-
tions as (νx).

The nominal datatype package automatically generates lemmas for reasoning
about α-equivalence between processes – the ones generated from Prop. 1 can
be found in the following proposition.

Proposition 3. The most commonly used α-equivalence rules for the Input-
and the Restriction case.

Input: a(x).P = b(y).Q =⇒ a = b ∧ ((x = y ∧ P = Q) ∨
(x �= y ∧ x � Q ∧ P = (x y) •Q))

Restriction: (νx)P = (νy)Q =⇒ (x = y ∧ P = Q) ∨
(x �= y ∧ x � Q ∧ P = (x y) •Q)
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Most modern theorem provers automatically generate induction rules for defined
datatypes. The nominal datatype package does the same for nominal datatypes
but with one addition: bound names which occur in the inductive cases can be
assumed to be disjoint from any finite set of names. This greatly reduces the
amount of manual α-conversions.

Functions over nominal datatypes have one restriction – they may not depend
on the bound names in their arguments. Since nominal types are equal up to
α-equivalence two equal terms may have different bound names.

The most commonly used function is substitution where P{a/b} (which can
be read P with a for b) is the substitution of all occurrences of b in P with a.

4 Operational Semantics

4.1 Definitions

We use the standard operational semantics [9]. Here transitions are of the form
P

α−→ P ′, where α is an action. A first attempt, which works well for simpler
calculi like CCS, is to inductively define a set of tuples containing three elements:
a process P , an action α and the α-derivative of P [2].

However, in the π-calculus the action α may bind a name, and the scope of
this binding extends into P ′. In particular we shall sometimes need to α-convert
the action together with the derivative P ′. For this purpose, we create a residual -
datatype which is a nominal datatype. It binds the bound names of an action
also in the derivative.

Definition 3. The residual datatype

datatype subject = Input name
| BoundOutput name

datatype freeRes = Output name name
| Tau

nominal_datatype residual = BoundR subject "<<name>> pi"
| FreeR freeRes pi

We introduce a notation for an arbitrary action with a bound name, i. e., an
Input - or a Bound Output action.

Definition 4
(i) P a�x�−→ P ′ denotes a transition with the bound name x in the action. Note

that a is of type subject.
(ii) P α−→ P ′ denotes a transition without bound names. Note that α is of

type freeRes.

We can now define our operational semantics using inductively defined sets, and
the set will contain tuples of two elements – one process and one residual.
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As previously mentioned, functions over nominal datatypes cannot depend
on bound names. This poses a slight problem, since traditionally some of the
operational rules have conditions on the bound names like x /∈ bn(α), i.e. x is
not in the bound names of α. A function such as bn does not exist in nominal
logic and thus cannot be created using the nominal datatype package. An easy
solution is to split the operational rules which have these types of conditions
into two rules — one for the transitions with bound names, and one for the
ones without. Doing this does not create extra proof obligations as most proofs
have to consider bound and free transitions separately anyway. The operational
semantics, including the split rules for Par and Res can be found in Fig. 1.

a(x).P
a(x)−→ P

Input
āb.P

āb−→ .P
Output

τ.P
τ−→ P

Tau

P
α−→ P ′

[a = a]P
α−→ P ′ Match

P
āb−→ P ′ a �= b

(νb)P
ā(b)−→ P ′

Open P
α−→ P ′

P + Q
α−→ P ′ Sum

P
a�x�−→ P ′ x � Q

P | Q a�x�−→ P ′ | Q
ParB P

α−→ P ′

P | Q α−→ P ′ | Q ParF

P
a(x)−→ P ′ Q

āb−→ Q′

P | Q τ−→ P ′{b/x} | Q′ Comm
P

a(x)−→ P ′ Q
ā(y)−→ Q′ y � P

P | Q τ−→ (νy)(P ′{y/x} | Q′)
Close

P
a�x�−→ P ′ y � (a, x)

(νy)P
a�x�−→ (νy)P ′ ResB

P
α−→ P ′ y � α

(νy)P
α−→ (νy)P ′ ResF

P | !P α−→ P ′

!P
α−→ P ′ Replication

Fig. 1. The Par- and the Res-rule in the operational semantics of the π-calculus have
been split. Symmetric versions have been elided.

4.2 Induction and Case Analysis Rules

Isabelle will automatically create rules for both induction and case analysis of
the semantics. These rules, however, assume that the equivalence relation used is
syntactic equivalence and not α-equivalence. While the nominal datatype pack-
age automatically creates induction rules for nominal datatypes there is no such
automation for the kind of inductively defined sets that we use in the semantics.
The rules generated by Isabelle for our operational semantics suffer from two
problems, which we now address in turn.

The first problem is that some semantic rules generate bound names. When
the rule is applied in the context of a proof, there is no a priori guarantee
that these names are fresh in this larger context. We therefore derive rules for
induction and case analysis which are parameterized on a finite set of names,
the “context names”, which the user can provide when applying the rule. The
bound names generated by the rules are guaranteed to be fresh from the context
names (just as is guaranteed automatically for nominal data types, and for the
same reason: avoiding name clashes and α-conversions later in the proof). This
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idea stems from [19] which has been developed independently of our work in
[18]. The logical framework has also been covered in [14].

As an example a derived rule for case analysis of the parallel operator is shown
in the following proposition where the parameter C is a set of context names:

Lemma 1. The derived case analysis rule for the parallel operator with no bound
names in the transition.
P | Q α−→ R′

∀P ′.P α−→ P ′ ∧R′ = P ′ | Q =⇒ Prop

∀P ′ Q′ a x b. P a(x)−→ P ′ ∧Q āb−→ Q′ ∧ α = τ∧
R′ = P ′{b/x} | Q′ ∧ x � C =⇒ Prop

∀P ′ Q′ a x y. P a(x)−→ P ′ ∧Q ā(y)−→ Q′ ∧ y � P ∧ α = τ ∧
R′ = (νy)(P ′{y/x} | Q′) ∧ x � C ∧ y � C =⇒ Prop

Prop

The two semantic rules which introduce bound names are the Comm- and the
Close rules. The rule can be instantiated with an arbitrary finite set of context
names C and these bound names will be set fresh for that set.

The second problem is that in case analysis, equivalence checks between terms
always appear. If these terms contain bound names, such as (νx)P = (νy)Q,
then normal unification is not possible. As seen in Prop. 1 and 2, every such
equivalence check produces either two cases which both have to be proven or
one case with several permutation and freshness conditions. As an example, a
rule for case analysis on the ν-operator with no bound names in the action can
be found in the following proposition:

Proposition 4. Theautomatically generated case analysis rule for the ν-operator,
based on Prop. 1, where no bound name occurs in the action.

(νx)P α−→ P ′

∀Q Q′ β y. Q
β−→ Q′ ∧ y � β ∧ (νx)P= (νy)Q ∧ α = β ∧P ′ = (νy)Q′ =⇒ Prop

Prop

The conjunct (νx)P = (νy)Q poses a problem as we have to show Prop for
all cases such that the equivalence holds. We can reason about this equality
using either Prop. 1 or Prop. 2 but neither of these rules are convenient to
work with. Prop. 1 causes a case explosion which forces us to prove the same
thing several times for different permutations on terms and Prop. 2 introduces
extra permutations which makes the proof more cumbersome to work with. We
therefore use the following derived lemma in place of the original case analysis
rule:

Lemma 2. Case analysis rule derived from Prop. 4.

(νx)P α−→ P ′

∀P ′′. P α−→ P ′′ ∧ x � α ∧ P ′ = (νx)P ′′ =⇒ Prop
Prop
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The main idea of the proof is to find a P ′′ which suitably depends on the uni-
versally quantified terms in the second assumption of the original proposition.

In this way, all checks for α-equivalence between agents have been abstracted
away and we are left with one very simple case to work with. Similar rules have
been derived from all generated induction rules, on the depth of inference as well
as case analysis of all operators. The only operator which requires an induction
rule rather than a case analysis rule is the !-operator as it is the only operator
which occurs in the premise of its inference rule, as can be seen in Fig. 1. There
is also an induction rule over all possible transitions.

5 Strong Bisimulation

Intuitively, two processes are said to be bisimilar if they can mimic each other
step by step. Traditionally, a bisimulation is a symmetric binary relation R such
that for all processes P and Q in R, if P can do an action, then Q can mimic
that action and their corresponding derivatives are in R.

When defining bisimulation between two processes in the π-calculus, extra
care has to be taken with respect to bound names in actions. Consider the
following processes:

P
def= a(u).(νb)b̄x.0

Q
def= a(x).0

Clearly P and Q should be bisimilar since they both can do only one input action
along a channel a and then nothing more. But since x occurs free in P , P cannot
be α-converted into a(x).(νb)b̄x. However, since processes have finite support,
there exists a name w which is fresh in both P and Q and after α-converting both
processes, bisimulation is possible. Hence, when reasoning about bisimulation,
we must restrict attention to the bound names of actions which are fresh for
both P and Q. One of our main contributions is how this is achieved without
running into a multitude of α-conversions.

Our formal definition of bisimulation equivalence uses the following notion,
where R is a binary relation on agents.

Definition 5. The agent P can simulate the agent Q preserving R, written
P �R Q, if
(∀a x Q′. Q a�x�−→ Q′ ∧ x � P =⇒

∃P ′. P a�x�−→ P ′ ∧ derivative(a, x, P ′, Q′, R)) ∧
(∀α Q′. Q α−→ Q′ =⇒ ∃P ′. P α−→ P ′ ∧ (P ′, Q′) ∈ R)

derivative(a, x, P ′, Q′, R) def=
case a of Input ⇒ ∀u. (P ′{u/x}, Q′{u/x}) ∈ R
| BoundOutput ⇒ (P ′, Q′) ∈ R

Note that the argument a in derivative is of type subject as described in Def. 3.
Thus, the requirement is that if Q has an action then P has the same action, and
the derivatives P ′ and Q′ are in R.
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The traditional way to define strong bisimulation equivalence is to say that
R is a bisimulation if it is symmetric and that for all agents P,Q it holds that
(P,Q) ∈ R → P �R Q; the strong bisimulation equivalence is then the union of
all strong bisimulations. As we shall see in a moment, an alternative definition
using direct coinduction, similar to the approach in [6], yields shorter proofs.
Our main improvement, however, is in the treatment of the bound name x. It
is by definition ensured not to be among the free names in P , but when we use
it within a complex proof we will run into a massive case analysis on whether x
is equal to other names used in the proof. In the same way as in Lemma 1 we
bypass this tedium and derive the following introduction rule for an arbitrary
finite set of context names C. This set is provided by the user to ensure that the
bound name is distinct from any name occurring so far in the proof.

Lemma 3. An introduction rule for simulation avoiding name clashes.
eqvt R
(∀a x Q′. Q a�x�−→ Q′ ∧ x � C =⇒

∃P ′. P a�x�−→ P ′ ∧ derivative(a, x, P ′, Q′, R))
(∀α Q′. Q α−→ Q′ =⇒ ∃P ′. P α−→ P ′ ∧ (P ′, Q′) ∈ R)

P �R Q
This is used extensively in our proofs. We can in this way make sure that when-
ever bound names appear in our proof context, these bound names do not clash
with other names which would force us to do α-conversions. The amount of α-
conversions we have to do manually is reduced to the instances where they would
be required in a manual proof.

Note that we need an extra requirement that our simulation relation is equiv-
ariant. The reason is that if the relation is not closed under permutations, we
cannot α-convert our processes. Fortunately, all relations of interest turn out to
be equivariant and the proof trivial.

Bisimulation equivalence can now be described using coinduction, or as the
greatest fixed point derived from a monotonic function.

Definition 6. Bisimulation equivalence, ∼, is a coinductive definition.
P ∼ Q def= P �∼ Q ∧ Q �∼ P

Note that we do not need to define what a bisimulation is; our coinductive
definition uses P �R Q directly. This defines ∼ to be the largest relation such
that related agents can simulate each other preserving ∼. Conducting proofs
on bisimulation equivalence often boils down to proving the same thing twice –
once for each direction. With our formulation it is often easy to just prove one
direction and let the other be inferred automatically.

When checking whether or not two processes are bisimilar, one picks a set X
which contains the processes and which represents what it is we are trying to
prove. It then suffices to show that all members of X are simulated preserving
X ∪ ∼. The coinduction rule is automatically generated by Isabelle.

Strong bisimulation is not a congruence as it is not preserved by the input-
prefix. We write Rs for the closure of the relation R under all substitutions.
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Definition 7. P Rs Q def= ∀σ. Pσ R Qσ where σ is a chain of substitutions.

From this we can define strong equivalence as the largest bisimulation relation
closed under substitution. One of our main results is proving in Isabelle that
strong equivalence is a congruence.

Theorem 1. ∼s is a congruence.

6 Weak Bisimulation

Weak bisimulation equivalence is often called observation equivalence. The in-
tuition is that τ -transitions are considered internal and hence invisible to the
outside environment. For two processes to be observation equivalent, they only
need to mimic the visible actions of each other. More formally, we reason about
a τ -chain P

τ̂=⇒ P ′ as the reflexive transitive closure of τ -actions, i.e. P τ̂=⇒
P ′ def= P

τ−→
∗
P ′. A weak transition is then said to be an action preceded and

succeeded by a τ -chain.
In the simulation of an input, weak late simulation is complicated. It requires

substitutions made as a result of the input to be applied immediately to the
input derivative before the succeeding τ -chain is executed, and that one such
derivative can continue to simulate for all possible received names, see e.g. [12].
Therefore the weak late semantics needs to carry additional information in the
labels as follows.

Definition 8. Weak late transitions
P

α=⇒ P ′ def= ∃P ′′ P ′′′. P τ̂=⇒ P ′′′ ∧ P ′′′ α−→ P ′′ ∧ P ′′ τ̂=⇒ P ′

P
ā(x)
=⇒ P ′ def= ∃P ′′ P ′′′. P τ̂=⇒ P ′′′ ∧ P ′′′ ā(x)−→ P ′′ ∧ P ′′ τ̂=⇒ P ′

P
u:a(x)@P ′′

=⇒ P ′ def= ∃P ′′′. P τ̂=⇒ P ′′′ ∧ P ′′′ a(x)−→ P ′′ ∧ P ′′{u/x} τ̂=⇒ P ′

As with our previous transitions, we let α range over free actions with no bound
names. Note that the bound name x in the bound output case is bound in P ′

and normal α-conversions can be applied. Also, even though we are modeling a
late semantics, the name x is not bound in P ′ in the input-transition as it is
substituted for u before the τ -chain. We can still do α-conversions through the
following lemma:

Lemma 4. if P
u:a(x)@P ′′

=⇒ P ′ and y � P then P
u:a(y)@(x y)•P ′′

=⇒ P ′

We also need to weaken the transitions in the standard way:

Definition 9. P
α̂=⇒ P ′ def= P

τ̂=⇒ P ′ if α = τ

P
α=⇒ P ′ otherwise

We can now define weak late simulation.

Definition 10. The agent P can weakly late simulate the agent Q preserving
R, written P≈>RQ, if
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(∀a x Q′. Q ā(x)−→ Q′ ∧ x � P =⇒
∃P ′. P ā(x)

=⇒ P ′ ∧ (P ′, Q′) ∈ R) ∧
(∀a x Q′. Q a(x)−→ Q′ ∧ x � P =⇒

∃P ′′. ∀u. ∃P ′. P u:a(x)@P ′′
=⇒ P ′ ∧ (P ′, Q′{u/x}) ∈ R) ∧

(∀α Q′. Q α−→ Q′ =⇒ ∃P ′. P α̂=⇒ P ′ ∧ (P ′, Q′) ∈ R)

The important aspect of weak late simulation is the fact mentioned above –
that an input-action a(x) must be matched by a weak transition with the same
input derivative P ′′ for all possible instantiations u of the bound name. From
our definition, we can derive an introduction rule for weak simulation similar to
the one done for strong simulation in Lemma 3.

Weak bisimulation equivalence is defined using coinduction in exactly the
same way as strong bisimulation.

Definition 11. Weak bisimulation equivalence, ≈, is a coinductive definition.
P ≈ Q def= P ≈>≈ Q ∧ Q ≈>≈ P

Weak bisimulation is not a congruence since it is neither preserved by the +-
operator nor by the input-prefix, but it is preserved by all other operators. The
first step in in this proof is to lift the operational semantics to a weak context,
that is, for every operational semantics rule we derive a weak counterpart. This
means that the proof strategies for strong equivalence carry over to weak equiv-
alence. As an example Lemma 5 derives the weak operational semantics for the
|-operator.

Lemma 5
P

u:a(x)@P ′′
=⇒ P ′ x � Q

P | Q u:a(x)@P ′′|Q
=⇒ P ′ | Q

ParIn

P
ā(x)
=⇒ P ′ x � Q

P | Q ā(x)
=⇒ P ′ | Q

ParBO P
α̂=⇒ P ′

P | Q α̂=⇒ P ′ | Q
ParF

P
b:a(x)@P ′′

=⇒ P ′ Q
āb=⇒ Q′

P | Q τ=⇒ P ′ | Q′
CommP

y:a(x)@P ′′
=⇒ P ′ Q

ā(y)
=⇒ Q′ y � P

P | Q τ=⇒ (νy)(P ′ | Q′)
Close

All operational rules cannot be lifted in this manner. The rules from Fig. 1 where
we cannot do this are Match, Sum and Replication in the case where α = τ and
P = P ′. In order to prove preservation of Match and Replication, we have to
prove that P ≈ [a = a]P and P | !P ≈ !P .

To obtain a congruence we follow the standard procedure. We define weak
congruence simulations, �>, in the same way as weak simulations, Def. 10, but
for the initial free transitions, we replace α̂=⇒ with α=⇒. In other words, the
simulating process must match at least the first action from the other process,
even invisible ones. We have proven that it is possible to lift all the operational
rules from Fig 1 to α=⇒.
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Definition 12. P ∼= Q
def= P �>≈ Q ∧ Q �>≈ P .

Note that this is not a recursive definition since it refers to ≈. The proof that
∼= is preserved by all operators except input-prefix corresponds closely to our
corresponding proof for ∼. The proof that ∼=s is a congruence follows in the
same manner.

Theorem 2. ∼=s is a congruence.

7 Early Semantics

In the early semantics the input action carries the name received rather than a
bound name, so we have a(x).P au−→ P{u/x} for all u. We have created transi-
tion systems for both early and late operational semantics. The proof strategies
involved for dealing with the two different approaches are nearly identical, even
though the actual theories are disjoint. The connection we have proved between
them is that every early τ -transition has a corresponding late τ -transition and
vice versa.

The derived early and late weak semantics are much more similar to each
other then their strong counterparts. The reason for this is that in the weak late
operational semantics, the instantiations of input bound names occurs inside the
transition before the succeeding τ -chain. This becomes apparent when we look
at our lifted rule for input-actions:

Lemma 6. a(x).P
u:a(x)@P

=⇒ P{u/x}.

Even in our late semantics this looks like an early transition since it contains
the name u received in the input. The difference between weak early and late
semantics is not so much in the transition system, but in the definition of
simulation.

All proofs that we have done for the late semantics, simulation- and bisimula-
tion relations have been done also for the early semantics. We have also proven
that all late bisimulation relations that we have considered are included in their
early counterparts.

8 Results and Conclusions

8.1 Current Status

We have used the new nominal datatype package in Isabelle to model the π-
calculus and our results are very encouraging. We have proved a substantial
part of [9], in particular preservation properties of strong and weak bisimula-
tion, and both late and early. Other results include that all all late τ -transitions
have a corresponding early one and vice versa and that all late bisimulation
relations have an early counterport. Moreover, we have proven that all struc-
turally congruent terms are bisimilar using both early and late semantics. We
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have created a substantial library concerning the fundamental mechanism in the
π-calculus, such as substitution and transitions. One of our main contributions
is that the proofs resemble the ones on paper very closely, since we make precise
the traditional “hand waving” with respect to bound names. Since we are using
Isabelle, we can write our proofs in a very readable form using Isar [21]. We
believe this to be the most extensive formalisation of a process calculus ever to
be done inside a theorem prover.

The nominal package is still work in progress and it is constantly being up-
dated. One very recent addition allows for users to define functions on their nomi-
nal datatypes using an automatically generated recursion combinator [16]. At the
moment we only use substitution as a function (both single and sequential).

8.2 Related Work

The π-calculus has been subject for many attempts at formalisations. Early
sketches in HOL include [10,7]. Later attempts have also been made using de-
Bruijn indices where names are encoded using natural numbers. More recent
work by Gabbay utilised FM set theory [4], the precursor of nominal logic,
although this attempt was later abandoned. The most extensively used approach
is higher order abstract syntax (HOAS) where weak HOAS is the technique most
similar to ours.

de Bruijn indices are heavily used in software which reasons about terms with
binders; an example for the π-calculus is the Mobility Workbench [20]. They
work well in these environments as they have very nice algorithmic properties.
However, these properties do not provide an intuitive mathematical framework.

Fraenkel Mostowski set theory was one of the first serious attempts to fomalise
nominal logic. It is standard ZF set theory but with an extra freshness axiom
added. In [4], Gabbay formalises a portion of the π-calculus in FM. Unfortu-
nately, this early version of nominal logic was incompatible with the axiom of
choice and had to be used in Isabelle/PURE – a bare boned set of theories with-
out much support for anything. This choice of framework was necessary since
Isabelle/HOL contains the axiom of choice which is inconsistent with FM.

Higher order abstract syntax (HOAS) is the approach most similar to ours. It
has been used to model the π-calculus in both Coq [6], by Honsell et. al., and
in Isabelle by Röckl and Hirschkoff [15]. When using HOAS terms, binders are
represented as functions of type name->term. However, if these functions range
over the entire function space they may produce exotic terms, so the formalisations
need to ensure that those are avoided. In [15], a special well-formedness predicate
is used to filter out the exotic terms. Another problem is that since abstraction is
handled by the meta-logic of the theorem prover, reasoning about binders at the
object level can become problematic. In [6] we can read:

The main drawback in HOAS is the difficulty of dealing with metathe-
oretic issues concerning names in process contexts, i.e. terms of type
name->proc. As a consequence, some metatheoretic properties involving
substitution and freshness of names inside proofs and processes, cannot
be proved inside the framework and instead have to be postulated.
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Our approach is completely free from any extra axioms, and since nominal logic
is a first order approach we do not have to worry about exotic terms. Moreover,
freshness conditions are part of the nominal infrastructure and all such conditions
are explicitly known at the object level and do not have to be postulated, thus
no extra infrastructure for choosing particular names is needed.

8.3 Impact and Further Work

Theorem provers suffer from a somewhat well-deserved reputation of being hard
to use for the uninitiated. However, having theories formalised by a computer has
significant advantages and making theorem provers easy to use for the general
engineer is a high priority. We believe that our work helps in this venture. The
challenging part has been to create inductive rules and easy-to-use definitions
for simulation and bisimulation. With this done the actual proofs done in the
theorem prover are not much harder than the ones done on paper.

Our next goal will be to provide support for model- and bisimulation checking
on actual protocols such as ad-hoc routing. Particularly processes with infinite
state space are of interest as these cannot be handled by automatic tools like
the Mobility Workbench.

There are several variants of the π-calculus, polyadic π-calculus and higher
order π-calculus just to name two. We believe that our definitions for simulation
and bisimulation can easily be transfered to many other calculi.

Acknowledgements. We would like to thank Stefan Berghofer for his generous
help with the understanding of the inner workings of Isabelle, Christian Urban
for developing the nominal datatype package and providing extensive support
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Abstract. The last few years have seen the development of the rewriting
calculus (also called rho-calculus or ρ-calculus) that uniformly integrates
first-order term rewriting and λ-calculus. The combination of these two
latter formalisms has been already handled either by enriching first-order
rewriting with higher-order capabilities, like in the Combinatory Reduc-
tion Systems (crs), or by adding to λ-calculus algebraic features.

In a previous work, the authors showed how the semantics of crs can
be expressed in terms of the ρ-calculus. The converse issue is adressed
here: rewriting calculus derivations are simulated by Combinatory Re-
duction Systems derivations. As a consequence of this result, important
properties, like standardisation, are deduced for the rewriting calculus.

Introduction

Lambda calculus and term rewriting are two foundational frameworks that had
a deep influence on the development of computation and deduction. Starting
from Klop’s ground-breaking work on higher-order rewriting [15], and because
of their complementarity, many frameworks have been designed with a view to
integrate these two formalisms.

Introduced in the late nineties (see e.g. [7,8]), the rewriting calculus, also
denoted ρ-calculus, combines uniformly the two paradigms and allows us to
write λx.t to abstract, like in the λ-calculus, over the variable x, but also λp.t
to abstract over an elaborated pattern p. Indeed, this last ρ-term is also written
p � t, emphasizing the rewriting aspect. This general abstract mechanism has
been shown to be quite expressive and useful. For instance, it is well adapted to
describe the semantics of imperative languages and object calculi [17,9] and the
ρ-calculus has been used to model the execution of rewrite rules and strategies
in rule-based languages like ELAN [10]. The logical aspects of the ρ-calculus are
also quite appealing and provide the foundation for the design of a new class of
proof assistants where computation and deduction can be adapted to the user’s
needs and understandings [22,4,12].

We are interested here in a better understanding of the behavior of the rewrit-
ing calculus by analyzing its derivation space. To this aim, we present an en-
coding of the ρ-calculus into crss, since for this kind of higher-order systems a
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well-developed meta-theory already exists. Studies on the comparison between
different higher-order formalisms has already been conducted between Combi-
natory Reduction Systems and Higher-order Rewrite Systems in [21]. Moreover,
an encoding of crss into the rewriting calculus has already been proposed by the
authors in [3]. This paper is concerned with the analysis of the converse relation,
i.e. the study of derivations performed in rewriting calculus and their equivalent
in higher-order rewriting, in particular in Combinatory Reduction Systems. We
define a translation of the components of the ρ-calculus into the analogous no-
tions in a crs. Using this translation, we show that every derivation of a ρ-term
has a corresponding derivation in the crs and we prove the soundness and com-
pleteness of this encoding. We conclude by deriving some important properties
concerning rewriting calculus reductions, as confluence, finiteness of develop-
ments and standardization, by using the well-known corresponding results in
the crss.

The paper is structured as follows: in Section 1 we briefly present the
ρ-calculus through its components. Section 2 provides a description of crss and
some examples. In Section 3 we present a translation from ρ-terms and evalua-
tion rules into crs-terms and crs-rewrite rules respectively, and we prove the
completeness and soundness of the translation. Section 4 concludes the paper
with some additional remarks and perspectives.

1 The Rewriting Calculus

We briefly present in what follows the syntax and the semantics of the basic
ρ-calculus. For a more detailed presentation the reader can refer to [8].

In this paper, the symbols t, u, . . . range over the set T of terms, the symbols
x, y, z . . . range over the infinite set X of variables and the symbols f, g, . . . of
fixed arity range over the infinite set F . Finally, the symbols p, q range over the
set of patterns P ⊆ T . All symbols can be indexed. Syntactic equality is denoted
by ≡. We consider the meta-symbols “λ . ” (abstraction operator), and “ � ”
(structure operator), and the (hidden) application operator. The set of ρ-terms
is then defined as follows:

T ::= X | F | λP .T | T T | T � T
P ::= X | F | F P . . .P

A term of the form λp.t is an abstraction with pattern p and body t. The term
t1 � t2 is a structure consisting of the two terms t1 and t2. The set of patterns
P is a parameter of the calculus and in full generality it could be as large as
the set of all terms T . We call algebraic the patterns used in this version of
the calculus and we usually denote a term of the form (. . . ((f t1) t2) . . .) tn
with f ∈ K of arity n by f(t1, t2, . . . , tn). A linear pattern is a pattern where
every variable occurs at most once. In the rest of the paper we will consider
only well-formed terms, i.e. terms where functional symbols are provided with
the correct number of arguments, according to their arity. Moreover, we will
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restrict to linear patterns, a standard restriction that will allow us to reuse the
properties of crssthat are indeed, in general, assuming left linearity.

We assume that the application operator associates to the left, while the other
operators associate to the right. The priority of the application is higher than
that of “λ . “ which is, in turn, of higher priority than the “ � ”.

Let � be a fresh symbol, called a hole. A term with one or more occurrences of
� is called a context and denoted by Ctx� �. An algebraic context is an algebraic
term with one or more occurrences of �. A ground context is a context containing
no variables. The term obtained by replacing from left to right in a context Ctx� �
the n holes � by the terms t1, . . . , tn, n ≥ 1, is denoted by Ctx�t1,...,tn�.

Similarly as in the λ-calculus, the ′′λ . ′′ operator is a binder of the calculus,
i.e. in the term λp.t the free variables of p are bound in t. Formally:

Definition 1 (Free variables). The set of free variables of a ρ-term t, denoted
FV(t) is inductively defined as follows:
FV(f) = { }
FV(x) = {x}
FV(λp.t) = FV(t) \ FV(p)

FV(t1 t2) = FV(t1) ∪ FV(t2)
FV(t1 � t2) = FV(t1) ∪ FV(t2)

The set BV of bound variables of a term is the complementary of the set of
free variables w.r.t. the set of variables of the respective term. A term is called
closed if all its variables are bound.

Example 1 (ρ-terms)

1. (λx.x x) (λx.x x) is the ρ-term corresponding to the λ-term ω ω;
2. The ρ-term (λplus(x, 0).x) plus(n, 0) encodes the application of the rewrite

rule x+ 0→ x to the term n+ 0;
3. The ρ-term (λf(a).a � λf(a).b) represents the rewrite system consisting of

the two rules f(a)→ a and f(a)→ b.

The classical notion of simultaneous substitution used in higher-order calculi,
like the λ-calculus, can be adapted to the ρ-calculus.

Definition 2 (Substitution). A substitution σ is a mapping from the set
of variables to the set of terms. A finite substitution has the form σ =
{x1/t1 . . . xm/tm}, also denoted σ = {x/t}, where Dom(σ) = {x1, . . . , xm}. Ap-
plying a substitution σ to a term t, denoted by σ(t) or tσ, is defined as follows:

σ(f) = f

σ(xi) =
{
ti if xi ∈ Dom(σ)
xi otherwise

σ(λp.t) = λp.σ(t)
σ(t1 t2) = σ(t1) σ(t2)
σ(t1 � t2) = σ(t1) � σ(t2)

We point out that we work modulo α-convention: when applying a substitution
to an abstraction, we know that the free variables of the corresponding abstracted
pattern do not belong to the domain of the substitution.

The evaluation mechanism of the calculus relies on the fundamental operation
of matching that allows us to instantiate variables by their current values. We can
use different matching theories for computing the matching substitutions like, for
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example, an empty theory, an equational theory or even more elaborated (higher-
order matching) theories [9]. In this paper, we will restrict to syntactic matching
problems, which have at most one solution and are known to be decidable [13].

Definition 3 (Syntactic matching). A (syntactic) matching problem is a for-
mula of the form p ≺≺ t, where p is a pattern and t is a term. A substitution σ
is solution of the matching problem p ≺≺ t, denoted by Sol(p ≺≺ t), if σ(p) ≡ t.

The small-step reduction semantics of the ρ-calculus is defined by the following
reduction rules:

(ρ) (λp.t2)t3 →ρ σ(t2) where σ = Sol(p ≺≺ t3)

(δ) (t1 � t2) t3 →δ t1 t3 � t2 t3
The (ρ)-rule can be applied if (and only if) a substitution of the matching

problem p ≺≺ t3 exists. In this case, the result of the (ρ)-rule is the application of
this substitution to the term t2. If such a substitution does not exist, then the (ρ)-
rule does not apply and the term is left as it is. Nevertheless, further reductions
or instantiations are likely to modify t3 so that the appropriate substitution can
be found and the rule can be fired. The (δ)-rule right-distributes the application
over the structures. This gives the possibility, for example, to apply in parallel
two distinct pattern abstractions to a given term.

As usual, we introduce the classical notions of one-step, many-steps, and
congruence with respect to the relation →ρδ induced by the top-level rules of
ρ-calculus. The one-step evaluation 
→ρδ is the contextual closure of →ρδ; if we
want to specify the position ω at which the rewrite steps occurs, we write 
→ω

ρδ.
The many-step evaluation 
→→ρδ is defined as the reflexive and transitive closure
of 
→ρδ.

Example 2 (Reductions). We consider the ρ-terms of Example 1 and we show
their respective reductions.

1. (λx.x x) (λx.x x) 
→ρ (λx.x x) (λx.x x) 
→ρ . . . is the infinite ρ-reduction
corresponding to the reduction of the λ-term ω ω;

2. Since Sol(plus(x, 0) ≺≺ plus(n, 0)) = {n/x}, we have the reduction
(λplus(x, 0).x) plus(n, 0) 
→ρ n;

3. (λf(a).a � λf(a).b) f(a) 
→δ (λf(a).a) f(a) � (λf(a).b) f(a) 
→→ρ a � b is a
ρ-reduction capturing the non-determinism of first-order term rewriting.

2 The Combinatory Reduction Systems

The Combinatory Reduction Systems (crss), introduced by J.W. Klop in
1980 [15], are a generalization of first-order term rewrite systems with a mecha-
nism of bound variables like in the λ-calculus. The definitions of this section are
based on the presentation of crss given in [16].

In what follows the symbols A,L,R, . . . range over the set MT of so called
meta-terms, t, u, . . . range over the set Tcrs of terms, x, y, z, . . . range over the set
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X of variables, X,Z . . . range over the set Z of meta-variables of fixed arity and
f, g, . . . range over the set F of functional symbols of fixed arity. We denote by
Fi ⊂ F (Zi ⊂ Z) the subset of symbols (meta-variables) of arity i. All symbols
can be indexed. The set of crs-meta-terms is defined as follows:

MT ::= X | Fn(MT 1, . . . ,MT n) | Zn(MT 1, . . . ,MT n) | [X ]MT

The set Tcrs ⊂ MT of crs-terms is composed of all the meta-terms without
meta-variables. We should point out that all meta-terms are well-formed, i.e. the
functional symbols and meta-variables take exactly as many arguments as their
arity. A crs context is defined similarly as in the ρ-calculus.

The operator [ ] denotes an abstraction similar to the abstraction of the
λ-calculus such that in [x]t the variable x is bound in t. In a meta-term of the
form [x]A we call A the scope of [x]. A variable x occurs free in a meta-term if it
is not in the scope of an occurrence of [x]. A variable x occurs bound otherwise.
The set of free variables of a meta-term A is written FV(A).

Meta-variables (in the crs rewrite rules defined below) behave as (free) vari-
ables of first-order rewrite systems. The set of meta-variables of a meta-term A
is written MV(A). As for the ρ-calculus, we work modulo the α-conversion.

Example 3 (Terms and Metaterms). Some examples of terms and metaterms:

– f([x]g(x, a)) ∈ Tcrs with f ∈ F1, g ∈ F2, a ∈ F0.
– Z1(Z2) ∈ MT with Z1 ∈ Z1, Z2 ∈ Z0.
– f([x]Z(x, y)) ∈MT with f ∈ F1, Z ∈ Z2.

The application of substitutions is defined at the meta-level of the calculus and
uses λ-calculus as meta-language (underlined just for distinguishing it from clas-
sical λ-calculus). Unintended bindings of variables by the λ-abstractor operator
are avoided using α-conversion. To simplify the notation we denote λx1 . . . λxn.t
by λx1 . . . xn.t. The reduction of λ-redexes is performed by the β-rule of the
λ-calculus. The β-normal form of a term t is denoted by ↓β. We should point
out that a crs-(meta)term is necessarily in β-normal form.

Performing a substitution in a crs corresponds to applying an assignment
(and consequently a set of substitutes) to a crs-meta-term.

Definition 4 (Substitute, assignment)
An n-ary substitute is an expression of the form ξ = λx1 . . . xn.u where
x1, . . . , xn are distinct variables and u is a crs-term. Its application to an n-
tuple of crs-terms t1, . . . , tn yields the simultaneous substitution of xi by ti in
u, i = 1 . . . n, denoted (λx1 . . . xn.u)(t1, . . . , tn)↓β = u{x1/t1, . . . , xn/tn}.

An assignment σ = {(Z1, ξ1), . . . , (Zn, ξn)}, is a finite set of pairs
(metavariable, substitute) such that arity(Zi) = arity(ξi) ∀i ∈ {1, . . . , n}
(Dom(σ) = {Z1, . . . , Zm}). The application of an assignment σ to a crs-meta-
term A, denoted σ(A) or Aσ, is inductively defined by:
σ(x) = x
σ(Zi) = ξi if (Zi, ξi) ∈ σ
σ(Zi) = Zi if Zi �∈ Dom(σ)

σ([x]A) = [x]σ(A)
σ(f(A1, . . . , An) = f(σ(A1), . . . , σ(An))
σ(Zi(A1, . . . , An)) = σ(Zi)(σ(A1), . . . , σ(An))↓β
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Notice that the assignments have no effect on variables since they can instan-
tiate only meta-variables. Since we work modulo the α-convention, unintended
bindings of free variables are avoided by renaming bound variables.

A crs rewrite rule is a pair of metaterms. We consider as left-hand side of
the rules only the crs-meta-terms satisfying the crs-pattern definition:

Definition 5 (crs-pattern). A crs-metaterm P is a crs-pattern if any of
its metavariables Z appears in a sub-metaterm of P of the form Z(x1, . . . , xn)
where the variables x1, . . . , xn, n ≥ 0, are distinct and all bound in P .

In this paper we only consider rewrite rules with crs-patterns as left-hand sides
and satisfying the usual conditions imposed in first-order rewriting:

Definition 6 (Rewrite rules). A set of crs rewrite rules consists of rules of
the form L→ R satisfying the following conditions:

– L and R are closed metaterms (FV(L) = FV(R) = ∅);
– L has the form f(A1, . . . , An) with A1, . . . , An metaterms and f ∈ Fn;
– MV(L) ⊇MV(R);
– L is a crs-pattern.

The last condition ensures the decidability and the uniqueness of the solution
of the matching inherent to the application of the crs-rules [3]. Moreover, the
additional condition of linearity can be required for the metaterm L, meaning
that L contains no multiple occurrences of the same metavariable.

Example 4 (β-rule in crss). The β-rule of λ-calculus (λx.t)u→β t{x/u} can be
expressed as the rewrite rule: App(Ab([x]Z(x)), Z1)→ Z(Z1). In this rule, called
βCRS in this paper, App ∈ F2 and Ab ∈ F1 are the encodings for the λ-calculus
application and abstraction operators respectively.

Given a rewrite rule L → R and a substitution σ, we have σ(L)→L→R σ(R) if
σ(L), σ(R) ∈ Tcrs. The term σ(L) is called a redex. The left-hand side and the
right-hand side of a crs rewrite rule are metaterms, but the rewrite relation
induced by the rule is a relation on terms.

Given a set of crs rewrite rules R, the corresponding one-step relation 
→R
(denoted also 
→L→R if we want to specify the applied rule) is the context closure
of the relation induced (as above) by the rules in R. The multi-step evaluation

→→R is defined as the reflexive and transitive closure of 
→R.

Example 5. Let us consider the crs-term f(App(Ab([x]f(x)), a)). We apply to
the sub-term App(Ab([x]f(x)), a) the βCRS rule (Example 4) using the assign-
ment σ = {(Z, λy.f y), (Z1, a)}. As result, we obtain the instantiation by σ of
the right-hand side R of the rule βCRS : σ(R) = σ(Z(Z1)) = (σ(Z))(σ(Z1)) =
(λy.f y)(a)↓β= f(a). Therefore we have App(Ab([x]f(x)), a) 
→βCRS f(a) and
thus f(App(Ab([x]f(x)), a)) 
→βCRS f(f(a)).
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One can notice that there are two binding mechanisms in the formalism presented
in this section. The first one is explicit in the syntax and denoted [x]t. The second
one that is implicit concerns the metavariables and comes from the rewriting
mechanism.

crss as defined so far are quite general and do not satisfy important proper-
ties like, for example, confluence. If we restrict to the class of orthogonal crss,
confluence and other interesting properties are satisfied [15].

Definition 7 (Orthogonality). Let R = {Li → Ri|i ∈ I} be a set of crs
rewrite rules.

1. R is non-overlapping if the following holds:
Let ri be the redex σ(Li) and let Z1, . . . Zn be all the distinct metavari-
ables of the metaterm Li. Then if ri contains another redex rj = σ(Lj),
this redex rj must be already present in σ(Zp(xi1 . . . xikp

)), for some sub-
term Zp(xi1 . . . xikp

) of Li.
2. R is left-linear if all the metaterms Li are left-linear.
3. R is orthogonal if it is non-overlapping and left-linear.
4. A crs is orthogonal if it has an orthogonal set of rewrite rules.

Similarly to the λ-calculus, crss can be equipped with simple types. All types are
generated from base types τ0, . . . , τn in the usual way. Variables and constants
have a (unique) base type, an abstraction [x]A has type [x]A : τ0 → τ1 if x : τ0
and A : τ1, a metaterm g(A1, . . . , An) with g ∈ Fn has type τ0 if g : τ1 . . . →
τn → τ0 and Ai : τi, for i = 1 . . . n. Similarly for a metaterm Z(A1, . . . , An).

3 Translating Rewriting Calculus into crs

The two systems introduced in the previous sections can be seen as two formats
of higher-order rewriting which, in spite of their differences in the presentation,
use similar mechanisms for performing computations.

We propose in this section an analysis of the two calculi in order to point
out their similarities. In particular, we define a translation function from the
ρ-calculus to simply-typed crs and we prove the completeness and soundness
of the translation. The results are obtained using an equivalence between the
rewrite relations of the two systems, making it possible to transfer the properties
holding for one system to the other, as discussed in Section 3.4.

3.1 The Translation

In the following we choose a crs having as variables the set of variables X of
the ρ-calculus and having as functional symbols the set of constants K of the
ρ-calculus plus four distinguished symbols: the binary symbols App,Dis, rule
and the unary symbol Ab. The types of the crs-terms are built from only one
base type that we denote τ .
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Definition 8 (Translation of terms)
The translation, denoted t, of a ρ-term t into a simply typed crs-term, is defined
as follows:

x = x with x of type τ

f(t1, . . . , tn) = f(t1, . . . , tn) with f : τ → . . .→ τ (n type arrows)
t1 t2 = App(t1, t2) with App : τ → τ → τ

t1 � t2 = Dis(t1, t2) with Dis : τ → τ → τ

λp.t = Ab([x1] . . . [xn].rule(p, t)) where {x1 . . . x1} = FV(p)
with Ab : (τ → . . .→ τ)→ (τ → τ)→ τ
and rule : τ → τ → (τ → τ)

Given a context Ctx� �, a hole � is of base type.

The ρ-calculus functional application is translated into a functional symbol with
associated arguments and corresponding type. The application and the structure
operator are translated by the two special symbols App and Dis of arity two.
Pattern abstractions need a more subtle translation. Since the crs operator [ ]
abstracts on single variables, we use an intermediary distinguished symbol rule
which takes as arguments the pattern and the right-hand side of the rule, and
then we abstract on the variables of the pattern. Since we want the result to
have a base type, we enclose the resulting crs-term with a symbol Ab meant to
collapse a functional type.

We can immediately notice that the crs-terms obtained as translation of some
ρ-terms have good structural properties.

Proposition 1 (Properties of the translation)

i) For any well-formed ρ-term t, we have t : τ .
ii) For any subterm s : τ of a crs-term t, there exists a ρ-term s′ such that

s′ = s.

Proof. By structural induction on the ρ-term t and the crs-term t, respectively.

These properties will be useful later on for proving the soundness of the
translation.

The set of rewrite rules of the crs is obtained by translating the evaluation
rules of the ρ-calculus.

Definition 9 (Evaluation rules encoding). Let p� � denote a ground
algebraic crs context with n holes. The translation of the evaluation rules of
the ρ-calculus into an (infinite) set R of crs rewrite rules (schematic in p� �)
is then defined as follows:

(ρp) App(Ab([x1] . . . [xn].rule(p�x1,...,xn�, Z(x1, . . . , xn))), p�Z1,...,Zn�)
→ Z(Z1, . . . , Zn)

(δC) App(Dis(Z1, Z2), Z3) → Dis(App(Z1, Z3), App(Z2, Z3))
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The δC-rule is a direct encoding of the (δ) evaluation rule of the rewriting cal-
culus, where the structure operator and the application operator have been re-
placed by the corresponding functional symbols in the crs. The first crs-rewrite
rule, the ρp-rule, is used to reduce the crs-redexes corresponding to an abstrac-
tion application in the ρ-calculus. To any ρ-reduction t0 = (λp.t1) t3 
→ρ . . . we
associate a crs-reduction t0 
→ρp . . .. The context p� � in the corresponding ρp-
rule is obtained by translating the ρ-pattern p into the crs and replacing its
n variables by n holes. Moreover, the translation implicitly defines a relation
between the free variables of the ρ-pattern p, say y1, . . . , yn, and the metavari-
ables Z1, . . . , Zn in the ρp-rule. We can formalise this relation using an injective
function ζ : X 
→ Z such that ζ(yi) = Zi ∈ Z0 for all i = 1 . . . n.

The side condition of the rule (ρ), i.e. σ = Sol(p ≺≺ t3), is encoded directly
inside the crs-rule ρp, by choosing the same structure of the context p� � in the
subterm rule(p�x1,...,xn�, . . .), encoding the ρ-abstraction, and in the metaterm
p�Z1,...,Zn� to which the abstraction is applied. This corresponds to the encoding
of the rule (ρ) with syntactic matching.

Observe that the rule schema ρp represents an infinity of rewrite rules, one
for each p� �. In principle, we suppose to have a rule ρp for each algebraic linear
ρ-pattern p. In practice, for the properties we are interested in, we will only need
a finite number of rules ρp, as discussed in Section 3.4.

In the following we will often denote the left-hand side of the rules δC and
ρp by LC and Lp, respectively. It is not difficult to see that LC and Lp are
crs-patterns:

Proposition 2. The metaterms LC and Lp of the rewrite rules δC and ρp are
crs-patterns, i.e. verify Definition 5, for any context p� �.

We can remark that this would not be the case without the assumption of linear-
ity on ρ-patterns. As a consequence of LC and Lp being crs-patterns, matching
in the obtained crs is decidable and unitary [3].

Example 6. In the rule ρp, consider the empty context for p� � and n = 1 (so that
we abstract on a single variable). We obtain in this way the following encoding
in the crs of the β-rule of the λ-calculus:

App(Ab([x].rule(x, Z(x))), Z1) → Z(Z1)

which is slightly different from the usual encoding, presented in Example 4.

Example 7. Consider the ρ-term t = (λg(x, y).f(x)) g(a, b). In the ρ-calculus we
have the reduction (λg(x, y).f(x)) g(a, b) 
→ρ f(a).

The translation of the term t into a crs-term is t =
App(Ab([x][y].rule(g(x, y), f(x))), g(a, b)). We can apply to t the crs-rewrite rule
ρg(x1,x2): App(Ab([x1][x2].rule(g(x1, x2), Z(x1, x2))), g(Z1, Z2)) → Z(Z1, Z2)
using the assignment σ = {(Z/λz1z2.f(z1), Z1/a, Z2/b}. We obtain

App(Ab([x][y].rule(g(x, y), f(x))), g(a))

→ρP σ(Z(Z1, Z2)) = σ(Z)(σ(Z1), σ(Z2)) = (λz1z2.f(z1))(a, b)↓β= f(a).
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3.2 Completeness of the Translation

The aim of this section is to show that for every ρ-reduction there exists a
corresponding crs-reduction. We start by proving a lemma expressing the inter-
action between the formation of contexts and substitutions and the translation.
We then show the simulation of one-step ρ-reductions in the crs and we conclude
the section by a theorem stating the completeness of the translation.

Lemma 1 (Context stability). Let s, s1, . . . sn be ρ-terms and Ctx� � be a
context. Then we have

i) Ctx�s� = Ctx�s�
ii) Ctx�s1,...,sn� = Ctx�s1,...,sn�
iii) s{x1/s1, . . . , xn/sn} = s{x1/s1, . . . , xn/sn}
Proof. By induction on the structure of the context Ctx� �.

The previous lemma is used to show that rewrite steps are naturally preserved
by the translation.

Lemma 2 (One-step simulation). Given a ρ-term t such that t 
→ρδ t1, then
in the corresponding crs we have t 
→R t1.

Proof. Without loss of generality, we suppose the redex being at the head posi-
tion in the ρ-term t.

– t 
→δ t1 then t = (t1 � t2) t3 and t′ = t1 t3 � t2 t3. We have t =
App(Dis(t1, t2), t3), we apply the rule (δC) using the assignment σ =
{Z1/t1, Z2/t2, Z3/t3} and we obtain σ(Dis(App(Z1, Z3), App(Z2, Z3))) =
Dis(App(t1, t3), App(t2, t3)) = t1.

– t 
→ρ t1 then t = (λp.v) u and t1 = σ(v) with FV(p) = {x1, . . . , xn} and
σ = Sol(p ≺≺ u) = {x1/u1, . . . , xn/un}.
In the crs, we have t = App(Ab([x1] . . . [xn].rule(p, v)), u). We can ap-
ply the corresponding crs-rewrite rule (ρp) using the assignment σ′ =
{Z/λz1 . . . zn.v′, Z1/u1, . . . , Zn/un} where v′ is the term v to which a
renaming of the variables xi into zi, for i = 1 . . . n, has been ap-
plied. By applying the converse renaming and by Lemma 1, we obtain
σ′(Z(Z1, . . . , Zn)) = (λz1 . . . zn.v′)(u1, . . . , un) ↓β = v′{z1/u1, . . . , zn/un}
= v{x1/u1, . . . , xn/un} = v{x1/u1, . . . , xn/un} = σ(v) = t1.

The generalisation to derivations of arbitrary length follows easily:

Theorem 1 (Completeness). Given a ρ-term t such that t 
→→ρδ tn, then in the
corresponding crs we have t 
→→R tn.
Proof. By induction on the length of the reduction, using Lemma 2.

We can notice that there is a one-to-one correspondence in the derivations, i.e.
for every step in the rewriting calculus a corresponding step is performed in
the crs. The substitution application is performed at the meta-level in both
calculi, by underlined beta-reductions in the crs and by simultaneous variable
substitutions in the ρ-calculus, and therefore does not affect the length of the
reductions.



88 C. Bertolissi and C. Kirchner

3.3 Soundness of the Translation

Completeness proves that for every rewrite step in ρ-calculus, a rewrite step in
the associated crs can be performed. We will show now that a rewrite step
in a translated term must originate from a rewrite step in the ρ-calculus. We
state first a precise relation between a crs assignment and the corresponding
ρ-calculus substitution.

Lemma 3. Let t = (λp.v) u be a ρ-term with FV(p) = {y1, . . . yn} and Lp be
the left hand side of the crs-rewrite rule ρp with Zi = ζ(yi) for all i = 1 . . . n.
Let σ be an assignment such that σ(Lp) = t. Then

1. the assignment σ is of the form σ = {Z/λz1 . . . zn.v, Z1/u1, . . . , Zn/un}.
2. in the ρ-calculus the substitution σ′ = {y1/u1, . . . , yn/un} is such that

σ′(p) = u.

Proof. 1. We show that the given assignment σ is a solution of the matching of
the crs metaterm Lp to the crs-term t. Since the solution of a crs pattern
matching problem is unique [3], this concludes the proof.

2. By Lemma 1 and the injectivity of the translation function.

We can show now that a rewrite step in the translation of the ρ-calculus is related
with a rewrite step in the ρ-calculus itself.

Lemma 4. If t 
→R t1 in the crs, then we have t 
→ρδ t
′ with t′ = t1.

Proof. By induction on the depth of the redex position in the term t.
Base case: the redex is at the head position in the term t. Then we have:

– t 
→δC t1 with t = App(Dis(t1, t2), t3) and t1 = Dis(App(t1, t3), App(t2, t3))
using the assignment σ = {Z1/t1, Z2/t2, Z3/t3}. In the ρ-calculus we have
t = (t1 � t2) t3 
→δ t′ = t1 t3 � t2 t3 and thus it is easy to see that t′ = t1.

– t 
→ρP t1. We have t = App(Ab([x1] . . . [xn].rule(p, v)), u) which
reduces to t1 = v′{z1/u1, . . . , zn/un} using the assignment σ =
{Z/λz1 . . . zn.v′, Z1/u1, . . . , Zn/un}, where v′ is the term v to which a re-
naming of the variables xi into zi, for i = 1 . . . n, has been applied. In the
ρ-calculus we have t = (λp.v) u with FV(p) = {x1, . . . xn}. By Lemma 3
there exists a substitution σ = {x1/u1, . . . , xn/un} solution of the match-
ing problem p ≺≺ u. Thus we obtain t 
→ρ t′ = σ(v) = v{x1/u1, . . . , xn/un}.
Using the converse renaming of zi into xi, for i = 1 . . . n, by Lemma 1, we
conclude t′ = t1.

Induction: If the redex is not at the head position in the term t. Then we have
t = Ctx�σ(L)� 
→R Ctx�σ(R)�, for some context Ctx� �. Since t and σ(L) are of base
type by Proposition 1 we have a ρ-context Ctx′� � such that Ctx′� � = Ctx� � and
a ρ-term s such that s = σ(L). Thus, by induction t = Ctx′�s� 
→ρδ Ctx′�s′� = t′

with s′ = σ(R). Hence, using Lemma 1, t′ = Ctx′�s′� = Ctx′�s′� = Ctx�σ(R)� = t1
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The previous lemma is generalised to arbitrary rewrite sequences in the following
theorem.

Theorem 2 (Soundness). If t 
→→R tn in the crs, then we have t 
→→ρδ t′ with
t′ = tn.

Proof. By induction on the length of the reduction, using Lemma 4.

Soundness and completeness say that the fact that a term rewrites to another
is preserved and reflected in the two systems. This can be seen as a measure of
the neatness of the translation. Indeed, other important properties, as discussed
in the following section, can be reflected from the crs into the ρ-calculus.

3.4 Properties

The obtained results allow us to deduce important properties for the rewriting
calculus via the properties of the corresponding crs, avoiding the development
of ad hoc proofs for the ρ-calculus.

In particular, we are interested in properties as confluence, finiteness of de-
velopments and standardisation, that analyse the derivation space starting from
an initial ρ-term. In the version of the rewriting calculus considered here (and
contrarily to the dynamic patterns used in [1]), all variables in a ρ-pattern p are
bound, therefore no new patterns can be created during the reduction. Therefore,
we can consider a crs having a finite number of rewrite rules, that is the rewrite
rule (δC) and for any pattern p present in the initial ρ-term, a corresponding
rule (ρP ).

First of all, we can notice that any crs obtained from the translation belongs
to the class of orthogonal crss, since it is left-linear and non-overlapping:

Lemma 5 (Orthogonality). The crs obtained as result of the translation of
the ρ-calculus is an orthogonal crs.

Proof. First, it is clear that the crs-patterns Lp and LC are linear, for any
context p� �. We show next that the rules (δC) and (ρP ) are non-overlapping.

Let t, t′ be two crs-terms. We show that if there exists an assignment σ such
that σ(Lp) = t and t 
→→R t′, then there exists an assignment σ′ such that σ′(Lp) =
t′. Suppose t = Ctx�σ2(L)� 
→→R Ctx�σ2(R)� = t′. The fact that the assignment σ
exists implies that the occurrence of the redex σ2(L) in t, say ω, corresponds to
a metavariables position in Lp, say the position of the metavariable Zi. Thus σ
of the form {Z/s0, Z1/s1, . . . , Zi/σ2(L), . . . , Zn/sn} is such that σ(Lp) = t. The
contraction of the redex σ2(L) in t affects only the subterm of t headed in ω,
therefore the substitution σ′ = {Z/s0, Z1/s1, . . . , Zi/σ2(R), . . . , Zn/sn} is such
that σ′(Lp) = t′. A similar reasoning can be done for the left-hand side LC of
the crs rewrite rule δC .

As a consequence of orthogonality, we can deduce immediately the confluence
property for the rewriting calculus. This property has already been proved for
various versions of the calculus, in particular in [5]. A confluence proof is also
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available for the typed version of the left linear calculus called PPTS [1]. Here
we obtain the confluence property for the ρ-calculus exploiting the well-known
results for orthogonal crss:

Corollary 1 (Confluence). The ρ-calculus with linear algebraic patterns and
syntactic matching is confluent.

Proof. By the encoding of Section 3.1, Lemma 5 and the confluence results for
orthogonal crss (see for example [20,21]).

Similarly, we can deduce in the ρ-calculus interesting properties for a special
kind of reductions, called developments. Intuitively, a development corresponds
to the computation of a chosen set of reducible expressions in a term. The theory
of developments, originally developed for the λ-calculus, has been successfully
adapted to several other computational paradigms, like first- and higher-order
term rewrite system. Interestingly, the notion of superdevelopments allows to
derive a new second-order matching algorithm [11].

The general defintion of developments for the rewriting calculus can be found
in [2]. The main desirable results on developments are the fact that the complete
development of a finite set of redexes always terminates (FD) and the fact that,
for a given initial term, all complete developments of a fixed set of redexes end
with the same term (FD!):

Corollary 2 (Finite developments)

– Developments in the ρ-calculus are always finite.
– All developments of a ρ-term t end on the same final term.

Proof. Follows from the results on developments proved for crss (see [15,20]).

These properties of developments are a key hypothesis to achieve a standard-
isation result. We know from the two theorems FD and FD! on developments
that the result of this kind of computations is unique and does not depend on
the choice of a particular reduction. We still lack of information about the way
to perform the computation in order to reach this result, when it exists. Stan-
dardisation ensures that, for any derivation, the reduction steps can always be
reordered to obtain a derivation in a canonical form, called standard:

Corollary 3 (Standardisation). For any two ρ-terms t1 and t2 such that t1
rewrites to t2, there exists a standard derivation leading from t1 to t2.

Proof. Follows from the results on standardisation proved for crss (see e.g. [18]).

4 Conclusions

The ρ-calculus is a powerful framework for specifying and reasoning about com-
putation and deduction. It is therefore of main interest to study the relationship
of the calculus with similar ones, in particular to understand its capabilities and
properties.
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We have presented in this paper the simulation of the rewriting calculus into
Combinatory Reduction systems, the converse simulation having already been
addressed in [3]. We have shown the encoding of the ρ-calculus into an appropri-
ate crs having as set of terms the encoding of ρ-terms and as set of rewrite rules
the encoding of the evaluation rules of the ρ-calculus. We have then proved the
soundness and completeness of this translation. These results allow us to adapt
the well-developed crss meta-theory to the rewriting calculus. In particular, we
can derive the properties of confluence, finite developments and standardisation
for the ρ-calculus. Similar approaches can be applied to related calculi like the
lambda calculus with patterns [19] or the pattern calculus [14].

The natural encoding we have presented in the paper leads to a simulation
step-by-step of ρ-derivations into crs-derivations. The translation the other way
round was not so neat, since “walking through the context” is done implicitly in
crss and thus additional ρ-terms needed to be inserted to direct the reduction in
the ρ-calculus. Here instead, the explicit application operator of the ρ-calculus
and the definition of rewrite rules at the object level in the ρ-calculus are encoded
into crs-terms using appropriate functional symbols. This allows to maintain,
in the translated terms, the control on the position to which the rewrite rule is
applied, which is a typical ingredient of the ρ-calculus.

We have considered in this paper the ρ-calculus with syntactic matching and
the two evaluation rules (δ) and (ρ). The obtained results can be easily gener-
alised to the version of the ρ-calculus with explicit delayed matching constraints.
This version of the ρ-calculus introduces the matching problems as part of the
ρ-calculus syntax and represents a first step towards an explicit handling of the
matching related computations [6]. Basically, a ternary symbol [ � ] , repre-
senting a term constrained by a matching, is added to the syntax of the ρ-calculus
and the set of evaluation rules is adapted accordingly. This new symbol can be
encoded in a crs-term using additional functional symbols in the crs-signature,
similarly as for the other ρ-calculus operators. The encoding of other versions of
the ρ-calculus into crss is matter of further study.

Other higher-order rewrite systems have already been compared. In particular,
it has been shown that crss and hrss have the same expressive power and
therefore they can be considered equivalent [21]. Using this comparison, we can
have an indirect representation of the ρ-calculus into hrss that is based on the
translation from the crss to hrss and the translation from ρ-calculus to crss we
have defined in this paper.

Acknowledgements. Many thanks to Vincent van Oostrom for fruitful suggestions
on the most natural encoding of the ρ-calculus as a CRS and to the anonymous
referees for their valuable remarks and suggestions.
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Relational Parametricity and Separation Logic�

Lars Birkedal1 and Hongseok Yang2

1 IT University of Copenhagen, Denmark
2 Queen Mary, University of London, UK

Abstract. Separation logic is a recent extension of Hoare logic for rea-
soning about programs with references to shared mutable data struc-
tures. In this paper, we provide a new interpretation of the logic for a
programming language with higher types. Our interpretation is based on
Reynolds’s relational parametricity, and it provides a formal connection
between separation logic and data abstraction.

1 Introduction

Separation logic [16,11,6] is a Hoare-style program logic, and variants of it have
been applied to prove correct interesting pointer algorithms such as copying a
dag, disposing a graph, the Schorr-Waite graph algorithm, and Cheney’s copying
garbage collector. The main advantage of separation logic compared to ordinary
Hoare logic is that it facilitates local reasoning, formalized via the so-called frame
rule using a connective called separating conjunction. The development of sep-
aration logic initially focused on low-level languages with heaps and pointers,
although in recent work [12,7] it was shown how to extend separation logic first
to languages with a simple kind of procedures [12] and then to languages also
with higher-types [7]. Moreover, in [12] a second-order frame rule was proved
sound and in [7] a whole range of higher-order frame rules were proved sound
for a separation-logic type system.

In [12] and [7] it was explained how second and higher-order frame rules can be
used to reason about static imperative modules. The idea is roughly as follows.
Suppose that we prove a specification for a client c, depending on a module k,

{P1} k {Q1} � {P} c(k) {Q}.

The proof of the client depends only on the “abstract specification” of the module
k, which describes the external behavior of k. Suppose further that an actual
implementation m of the module satisfies

{P1 ∗R}m {Q1 ∗R}.

Here R is the internal resource invariant of the module m, describing the internal
heap storage used by the module m to implement the abstract specification. We
can then employ a frame rule on the specification for the client to get
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{P1 ∗R} k {Q1 ∗R} � {P ∗R} c(k) {Q ∗R},

and combine it with the specification for m to obtain

{P ∗R} c(m) {Q ∗R}.

A key advantage of this approach to modularity is that it facilitates so-called “ow-
nership transfer.” For example, if the module is a queue, then the ownership of cells
transfers from the client to module upon insertion into the queue. Moreover, the
discipline allows clients to maintain pointers into cells that have changed owner-
ship to the module. See [12] for examples and more explanations of these facts.

Note that the higher-order frame rules in essence provide implicit quantifi-
cation over internal resource invariants. In [4] it is shown how one can employ
a higher-order version of separation logic, with explicit quantification of asser-
tion predicates to reason about dynamic modularity (where there can be several
instances of the same abstract data type implemented by an imperative mod-
ule), see also [13]. The idea is to existentially quantify over the internal resource
invariants in a module, so that in the above example, c would depend on a
specification for k of the form

∃R.{P1 ∗R} k {Q1 ∗R}.
As emphasized in the papers mentioned above, note that, both in the case of im-
plicit quantification over internal resource invariants (higher-order frame rules)
and in the case of explicit quantification over internal resource invariants (ex-
istentials over assertion predicates), reasoning about a client does not depend
on the internal resource invariant of possible module implementations. Thus the
methodology allows us to formally reason about mutable abstract data types,
aka. imperative modules. However, the models in the papers mentioned above
do not allow us to make all the conclusions we would expect from reasoning
about mutable abstract data types. In particular, we would expect that clients
should behave parametrically in the internal resource invariants: When a client
is applied to two different implementations of a mutable abstract data type, it
should be the case that the client preserves relations between the internal re-
source invariants of the two implementations. This is analogous to Reynolds’s
style relational parametricity for abstract data types with quantification over
type variables [15].

In this paper we provide a new parametric model of separation logic, which
captures that clients behave parametrically in internal resource invariants of
mutable abstract data types. For the purposes of the present paper, we have
decided to focus on the implicit approach to quantification over internal resource
invariants via higher-order frame rules, since it is technically simpler than the
explicit approach.1 Our model validates a whole range of higher-order frame
1 The reason is that the implicit quantification of separation logic uses quantification

in a very disciplined way so that the usual reading of assertions as sets of heaps can
be maintained; if we use quantification without any restrictions, as in [2], it appears
that we cannot have the usual reading of assertions as sets of heaps because, then,
the rule of consequence is not sound.
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rules, as in [7], but here we achieve that for a more standard presentation of
separation logic and not only for a separation-logic type system as in [7].

Technically, it has proven to be a very non-trivial problem to define a paramet-
ric model for separation logic. We describe the challenges and give an overview
of the main ideas in our approach in the following section. In Section 3 we de-
scribe the programming and the assertion language we consider and in Section 4
we define our version of separation logic. In Section 5 we define the semantics
of our programming language in the category of FM-cpos and we define our
relational interpretation of separation logic in Section 6. Section 7 relates our
relational interpretation to the standard interpretation of separation logic, and
in Section 8 we present the abstraction theorem that our parametric model val-
idates. We briefly describe an example in Section 9 and finally we conclude and
discuss future work in Section 10. For reasons of space most proofs have been
omitted; they can be found in the full version of the paper.2

2 Challenges and Main Ideas

One of the main technical challenges in developing a relationally parametric
model of separation logic, even for a simple first-order language, is that the
standard models of separation logic allow the identity of locations to be ob-
served in the model. This means in particular that allocation of new heap cells
is not parametric because the identity of the location of the allocated cell can be
observed in the model. (We made this observation in earlier unpublished joint
work with Noah Torp-Smith, see [18, Ch. 6].)

This problem of non-parametric memory allocation has also been noticed
by recent work on data refinement for heap storage, which exploits semantic
ideas from separation logic [8,9]. However, the work on data refinement does not
provide a satisfactory solution. Either it avoids the problem by assuming that
clients do not allocate cells [8], or its solution has difficulties for handling higher-
order procedures and formalizing (observational) equivalences, not refinements,
between two implementations of a mutable abstract data type [9].

Our solution to this challenge is to define a more refined semantics of the
programming language using FM domain theory, in the style of Benton and
Leperchey [3], in which one can name locations but not observe the identity of
locations because of the built-in use of permutation of locations. Part of the trick
of loc. cit. is to define the semantics in a continuation-passing style so that one
can ensure that new locations are suitably fresh with respect to the remainder
of the computation. (See Section 5 for more details.) Benton and Leperchey
used the FM domain-theoretic model to reason about contextual equivalence
and here we extend the approach to give a semantics of separation logic in
a continuation-passing style. We relate this new interpretation to the standard
direct-style interpretation of separation logic via the so-called observation closure
(−)⊥⊥ of a relation, see Section 7.
2 The full version is available at the following URL:
http://www.dcs.qmul.ac.uk/~ hyang/paper/fossacs07-full.pdf
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The other main technical challenge in developing a relationally parametric
model of separation logic for reasoning about mutable abstract data types is to
devise a model which validates a wide range of higher-order frame rules. Our
solution to this challenge is to define an intuitionistic interpretation of the spec-
ification logic over a Kripke structure, whose ordering relation intuitively cap-
tures the framing-in of resources. Technically, the intuitionistic interpretation, in
particular the associated Kripke monotonicity, is used to validate a generalized
frame rule. Further, to show that the semantics of the logic does indeed satisfy
Kripke monotonicity for the base case of triples, we interpret triples using a
universal quantifier, which intuitively quantifies over resources that can possibly
be framed in. In the earlier non-parametric model of higher-order frame rules
for separation-logic typing in [7] we also made use of a Kripke structure. The
difference is that in the present work the elements of the Kripke structure are re-
lations on heaps rather than predicates on heaps because we build a relationally
parametric model.

3 Programs and Assertions

In this paper, we consider a higher-order language with immutable stack vari-
ables. The types and terms of the languages are defined as follows:

Types τ ::= com | ref→ τ | τ→ τ Expressions E ::= i | nil
TermsM ::= x | λi.M |M E | λx: τ.M |MM | fixM | if (E=E)MM |M ;M

| let i=new in M | free(E) | let i=[E] in M | [E]:=E

The language separates expressions E from terms M . Expressions denote heap-
independent reference values, and they are bound to stack variables i, j. On the
other hand, terms denote possibly heap-dependent computations, and they are
bound to identifiers x, y. The syntax of the language ensures that expressions
always terminate, while terms can diverge. The types are used to classify terms
only. com denotes commands, ref → τ means functions that take an expression
parameter, and τ → τ ′ denotes functions that takes a term parameter. Note
that to support two different function types, the language includes two kinds
of abstraction and application, one for expression parameters and the other for
term parameters. We assume that term parameters are passed by name, and
expression parameters are passed by value.

To simplify the presentation, we take a simple storage model where each heap
cell has only one field for references. Command let i=new in M allocates such a
unary heap cell, binds the address of the cell to i, and runs M under this binding.
The content of this newly allocated cell at address i is read by let j = [i] in N
and updated by [i] := E. The cell i is deallocated by free(i).

The language uses typing judgments of the form Δ � E( : ref) and Δ |Γ �
M : τ , where Δ is a finite set of stack variables and Γ is a standard type envi-
ronment for identifiers x. The typing rules for expressions and terms are shown
in Figure 1.
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Δ, i � i Δ � nil

Δ | Γ, x : τ � x : τ

Δ, i | Γ �M : τ

Δ | Γ � λi.M : ref → τ

Δ | Γ �M : ref → τ Δ � E
Δ | Γ �M E : τ

Δ | Γ, x : τ �M : τ ′

Δ | Γ � λx : τ.M : τ → τ ′
Δ | Γ �M : τ ′ → τ Δ | Γ � N : τ ′

Δ | Γ �M N : τ

Δ | Γ �M : τ → τ

Δ | Γ � fix M : τ

Δ � E Δ � F Δ | Γ �M : com Δ | Γ � N : com

Δ | Γ � if (E=F ) M N : com

Δ |Γ �M : com Δ |Γ � N : com

Δ |Γ �M ;N : com

Δ, i |Γ �M : com

Δ |Γ � let i=new in M : com

Δ � E
Δ |Γ � free(E) : com

Δ, i | Γ �M : com Δ � E
Δ | Γ � let i=[E] in M : com

Δ � E Δ � F
Δ | Γ � E := F : com

Fig. 1. Typing Rules for Expressions and Terms

We use the standard assertions from separation logic to describe properties of
the heap:3 P ::= E = E | E ≤ E | E �→ E | emp | P ∗P | P∧P | ¬P | ∃i. P.
The points-to predicate E �→ E′ means that the current heap has only one cell
at address E and that the content of the cell is E′. The emp predicate denotes
the empty heap, and the separating conjunction P ∗ Q means that the current
heap can be split into two parts so that P holds for the one and Q holds for the
other. The other connectives have the usual meaning from classical logic. All the
missing connectives from classical logic are defined as usual.

Assertions only depend on stack variables i, j, not identifiers x, y. Thus as-
sertions are typed by a judgment Δ � P : Assertion. The typing rules for this
judgment are completely standard, and thus omitted from this paper.

4 Separation Logic

Our version of separation logic is the first-order intuitionistic logic extended
with Hoare triples and invariant extension. The formulas in the logic are called
specifications, and they are defined by the following grammar:

ϕ ::= {P}M{Q} | ϕ⊗ P | E = E | M = M
| ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ∀x: τ.ϕ | ∃x: τ.ϕ | ∀i.ϕ | ∃i.ϕ

The formula ϕ ⊗ P means the extension of ϕ by the invariant P . It can be
viewed as a syntactic transformation of ϕ that inserts P ∗− into the pre and post
conditions of all triples in ϕ. For instance, ({P}x{Q} ⇒ {P ′}M(x){Q′}) ⊗ P0

is equivalent to {P ∗ P0}x{Q ∗ P0} ⇒ {P ′ ∗ P0}M(x){Q′ ∗ P0}. We write Specs
for the set of all specifications.
3 We omit separating implication −∗ to simplify presentation.
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Proof Rules for Hoare Triples

(∀i.{P}M{Q}) ⇒ {∃i. P}M{∃i. Q} (where i �∈ fv(M))

({P}M{Q} ∨ {P ′}M{Q′}) ⇒ {P ∨ P ′}M{Q ∨Q′}
{P ∧ E=E}M{Q} ∧ {P ∧ E �=F}N{Q} ⇒ {P}if (E=F )M N{Q}

{P}M{P0} ∧ {P0}N{Q} ⇒ {P}M ;N{Q}
(∀i. {P ∗ i �→ nil}M{Q}) ⇒ {P}let i=new in M{Q} (where i�∈fv(P,Q))

(∀i. {P ∗ E �→ i}M{Q}) ⇒ {∃i. P ∗ E �→ i}let i=[E] in M{Q}
(where i�∈fv(Q))

{E �→ F}free(E){emp} {E �→ E′}[E] := F{E �→ F}
[[P ]]ρ ⊆ [[P ′]]ρ and [[Q′]]ρ ⊆ [[Q]]ρ for all ρ ∈ [[Δ]]

Δ | Γ � {P ′}M{Q′} ⇒ {P}M{Q}
Proof Rules for Invariant Extension −⊗ P
ϕ ⇒ ϕ⊗ P {P}C{P ′} ⊗Q ⇔ {P ∗Q}C{P ′ ∗Q}

(E = F )⊗Q ⇔ E = F (M = N)⊗Q ⇔ (M = N)

(ϕ⊗ P )⊗Q ⇔ ϕ⊗ (P ∗Q) (ϕ⊕ ψ)⊗ P ⇔ (ϕ⊗ P )⊕ (ψ ⊗ P )
(where ⊕ ∈ {⇒,∧,∨})

(κx: τ. ϕ)⊗ P ⇔ κx: τ. ϕ⊗ P (κi. ϕ)⊗ P ⇔ κi. ϕ⊗ P
(where κ ∈ {∀, ∃}) (where κ ∈ {∀, ∃} and i �∈ fv(P ))

Rule for Fixed-Point Induction

C ::= [ ] |λi.C |C E |λx: τ.C |CM | fixC |C;M γ ::= {P}C{Q} | γ∧γ | ∀x: τ.γ | ∀i.γ
(∀x. γ(x)⇒ γ(M x)) ⇒ γ(fix M)

where γ(N) is a capture-avoiding insertion of N into the hole [−] in γ.

Fig. 2. Sample Proof Rules

Specifications are typed by the judgment Δ | Γ � ϕ : Specs, where we over-
loaded Specs to mean the type for specifications.

The logic includes all the usual proof rules from first-order intuitionistic logic
with equality, and a rule for fixed-point induction. In addition, it contains proof
rules from separation logic, and higher-order frame rules, expressed in terms of
rules for invariant introduction and distribution. Figure 2 shows some of these
additional rules and a rule for fixed-point induction. In the figure, we often omit
contexts Δ | Γ for specifications and also conditions about typing.

The rules for Hoare triples are the standard proof rules of separation logic
adapted to our language. Note that in the rule of consequence, we use the stan-
dard semantics of assertions P, P ′, Q,Q′, in order to express semantic impli-
cations between those assertions. The rules for invariant extension formalize
higher-order frame rules, extending the idea in [7]. The generalized higher-order
frame rule ϕ⇒ ϕ⊗P adds an invariant P to specification ϕ, and the other rules
distribute this added invariant all the way down to the triples. The last rule is for
fixed-point induction, and it relies on the restriction that a specification is of the
form γ(fix M). The grammar for γ guarantees that γ(x) defines an admissible
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predicate for x, thus ensuring the soundness of fixed-point induction. Moreover,
it also guarantees that γ(x) holds when M means ⊥, so allowing us to omit a
usual base case, “γ(⊥),” from the rule.

Note that the rules do not include the so-called conjunction rule:

({P}M{Q} ∧ {P ′}M{Q′}) ⇒ {P ∧ P ′}M{Q ∧Q′}

The omission of this rule is crucial, since our parametricity interpretation does
not validate the rule. We discuss the conjunction rule further in Section 10.

5 Semantics of Programming Language

Let Loc be a countably infinite set of locations. The programming language is
interpreted in the category of FM-cpos on Loc.

We remind the reader of the basics of FM domain theory. Call a bijection π
on Loc a permutation when π(l) �= l only for finitely many l, and let perm be
the set of all permutations. An FM-set is a pair of a set A and a function · of
type perm×A→ A, such that (1) id · a = a and π · (π′ · a) = (π ◦ π′) · a, and (2)
every a ∈ A is supported by some finite subset L of Loc, i.e.,

∀π ∈ perm. (∀l ∈ L. π(l) = l) =⇒ π · a = a.

It is known that every element a in an FM-set A has a smallest set L that
supports a. This smallest set is denoted supp(a). An FM function f from an
FM-set A to an FM-set B is a function from A to B such that f(π ·a) = π ·(f(a))
for all a, π.

An FM-poset is an FM-set A with a partial order � on A such that a �
b =⇒ π · a � π · b for all π, a, b. We say that a (ω-)chain {ai}i in FM-poset A is
finitely supported iff there is a finite subset L of Loc that supports all elements
in the chain. Finally, an FM-cpo is an FM-poset (A,�) for which every finitely-
supported chain {ai}i has a least upper bound, and an FM continuous function
f from an FM-cpo A to an FM-cpo B is an FM function from A to B that
preserves the least upper bounds of all finitely supported chains.

Types are interpreted as pointed FM-cpos, using the categorical structure of
the category of FM-cpos, see Figure 3. In the figure, we use the FM-cpo ref of ref-
erences defined by: ref

def
= Loc +{nil} with π ·v def

= if (v = nil) then nil else π(v).
The only nonstandard part is the semantics of the command type com, which
we define in the continuation passing style following [17,3]:

O
def
= {normal , err}⊥ (with π · o = o) Heap

def
= Loc ⇀fin ref

cont
def
= (Heap → O) [[com]]

def
= (Heap × cont → O).

Here A× B and A → B are cartesian product and exponential in the category
of FM-cpos. And A ⇀fin B is the FM-cpo of the finite partial functions from A
to B whose order and permutation action are defined below:
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ref
def
= Loc + {nil} [[ref → τ ]]

def
= ref → [[τ ]] [[τ → τ ′]]

def
= [[τ ]]→ [[τ ′]]

[[com]]
def
= Heap × cont → O (where O = {normal , err}⊥ and cont = Heap → O)

[[Δ]]
def
=

∏
i∈Δ ref [[Γ ]]

def
=

∏
x:τ∈Γ [[τ ]].

Fig. 3. Interpretation of Types and Typing Contexts

[[Δ � E]] : [[Δ]]→ ref [[Δ, i � i]]ρ def
= ρ(i) [[Δ � nil]]ρ

def
= nil

Fig. 4. Interpretation of Expressions

1. f � g def⇐⇒ dom(f) = dom(g) and f(a) � g(a) for all a ∈ dom(f),

2. (π · f)(a)
def
= if (a ∈ π(dom(f))) then (π · ((f ◦ π−1)(a))) else undefined.

The first FM-cpo O specifies all possible observations, which are normal ter-
mination normal , erroneous termination err or divergence ⊥. The next FM-cpo
Heap denotes the set of heaps. It formalizes that a heap contains only finitely
many allocated cells and each cell in the heap contains a reference. The third
FM-cpo cont represents the set of continuations that consume heaps. Finally,
[[com]] is the set of cps-style commands. Those commands take a current heap h
and a continuation k, and compute an observation in O (often by computing a
final heap h′, and calling the given continuation k with h′).

Note that Heap has the usual heap disjointness predicate h#h′, which denotes
the disjointness of dom(h) and dom(h′), and the usual partial heap combining
operator •, which takes the union of (the graphs of) two disjoint heaps. The #
predicate and • operator fit well with FM domain theory, because they preserve
all permutations: h#h′ ⇐⇒ (π · h)#(π · h′) and π · (h • h′) = (π · h) •
(π · h′).

The semantics of typing contextsΔ andΓ is given by cartesian products: [[Δ]]
def
=

∏
i∈Δ ref and [[Γ ]]

def
=

∏
x:τ∈Γ [[τ ]]. The products here are taken over finite families,

so they give well-defined FM-cpos.4 We will use symbols ρ and η to denote envi-
ronments in [[Δ]] and [[Γ ]], respectively.

The semantics of expressions and terms is shown in Figures 4 and 5. It is stan-
dard, except for the case of allocation, where we make use of the underlying FM
domain theory: The interpretation picks a location that is fresh with respect to
currently known values (i.e., supp(h, η, ρ)) as well as those that will be used by
the continuation (i.e., supp(k)). The cps-style interpretation gives us an explicit
handle on which locations are used by the continuation, and the FM domain the-
ory ensures that supp(h, η, ρ, k) is finite (so a new location l can be chosen) and
that the choice of l does not matter, as long as l is not in supp(h, η, ρ, k). We bor-
rowed this interpretation from Benton and Leperchey [3].

4 An infinite product of FM-cpos is not necessarily an FM-cpo.
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[[Δ |Γ �M : τ ]] : [[Δ]] × [[Γ ]]→ [[τ ]]

[[Δ |Γ, x: τ � x: τ ]]ρ,η
def
= η(x)

[[Δ |Γ � λi.M : ref → τ ]]ρ,η
def
= λv: ref . [[Δ, i |Γ �M : τ ]]ρ[i→v],η

[[Δ |Γ �M E: τ ]]ρ,η
def
= ([[Δ |Γ �M : ref → τ ]]ρ,η) [[E]]ρ

[[Δ |Γ � λx: τ ′.M : τ ′ → τ ]]ρ,η
def
= λm: [[τ ′]]. [[Δ |Γ, x: τ ′ �M : τ ]]ρ,η[x→m]

[[Δ |Γ �M N : τ ]]ρ,η
def
= ([[Δ |Γ �M : τ ′ → τ ]]ρ,η) [[Δ |Γ � N : τ ′]]ρ,η

[[Δ |Γ � fix M : τ ]]ρ,η
def
= leastfix [[Δ |Γ �M : τ → τ ]]ρ,η

[[Δ |Γ � if (E=F ) M N : com]]ρ,η
def
= if [[E]]ρ=[[F ]]ρ then [[Δ |Γ �M : com]]ρ,η

else [[Δ |Γ � N : com]]ρ,η

[[Δ |Γ �M ;N : com]]ρ,η(h, k)
def
= let k′ be λh′. [[Δ |Γ � N : com]]ρ,η(h′, k)

in [[Δ |Γ �M : com]]ρ,η(h, k′)

[[Δ |Γ � let i=new in M : com]]ρ,η(h, k)
def
= [[Δ, i |Γ �M : com]]ρ[i→l],η(h • [l→nil ], k)

(where l ∈ (Loc−supp(h, ρ, η, k)))

[[Δ |Γ � free(E): com]]ρ,η(h, k)
def
= if [[E]]ρ �∈dom(h) then err

else (k(h′) for h′ s.t. h′ • [[[E]]ρ→h([[E]]ρ)] = h)

[[Δ |Γ � let i=[E] in M : com]]ρ,η(h, k)
def
= if [[E]]ρ �∈dom(h) then err

else [[Δ, i |Γ �M : com]]ρ[i→h([[E]]ρ)],η(h, k)

[[Δ |Γ � [E]=F : com]]ρ,η(h, k)
def
= if [[E]]ρ �∈dom(h) then err else k(h[[[E]]ρ→[[F ]]ρ])

Fig. 5. Interpretation of Terms

6 Relational Interpretation of Separation Logic

We now present the main result of this paper, a relational interpretation of separa-
tion logic. In this interpretation, a specification means a relation on terms, rather
than a set of terms “satisfying” the specification. This relational reading formal-
izes the intuitive claim that proof rules in separation logic ensure parametricity
with respect to the heap.

Our interpretation has two important components that ensure parametricity.
The first is a Kripke structure R. The possible worlds of R are finitely supported
binary relations r on heaps,5 and the accessibility relation is the preorder defined
by the separating conjunction for relations:

h0[r ∗ s]h1
def⇔ there exist splittings n0 •m0 = h0 and n1 •m1 = h1 such that

n0[r]n1 and m0[s]m1,

r � r′ def⇔ there exists s such that r ∗ s = r′.

Intuitively, r � r′ means that r′ is a ∗-extension of r by some s. The Kripke struc-
tureR parameterizes our interpretation, and it guarantees that all the logical con-
nectives behave parametrically wrt. relations between internal resource invariants.
5 A relation r is finitely supported iff there is L ⊆fin Loc s.t. for every permutation π,

if π(l) = l for all l ∈ L, then ∀h0, h1. h0[r]h1 ⇐⇒ (π · h0)[r](π · h1).
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The second is semantic quadruples, which describe the relationship between two
commands. We use the semantic quadruples to interpret Hoare triples relationally.
Consider c0, c1 ∈ [[com]] and r, s ∈ R. For each subset D0 of an FM-cpo D, define
eq(D0) to be the partial identity relation on D that equates only the elements in
D0. A semantic quadruple [r](c0, c1)[s] holds iff

∀r′ ∈ R. ∀h0, h1 ∈ Heap. ∀k0, k1 ∈ cont .
(h0[r ∗ r′]h1 ∧ k0[s ∗ r′ → eq(G)]k1) =⇒ (c0(h0, k0)[eq(G)]c1(h1, k1)),

where G is the set O − {err} = {normal ,⊥} of good observations. The above
condition indirectly expresses that if the input heaps h0, h1 are r∗r′-related, then
the output heaps are related by s ∗ r′. Note that the definition quantifies over re-
lations r′ for new heaps, thus implementing relational parametricity. In Section 7,
we show how semantic quadruples are related to a more direct way of relating two
commands and we also show that the parametricity in the definition of semantic
quadruples implies the locality condition in separation logic [16].

The semantics of the logic is defined by the satisfaction relation |=Δ|Γ between
[[Δ]]× [[Γ ]]2 ×R and Specs, such that |=Δ|Γ satisfies Kripke monotonicity:

(ρ, η0, η1, r |=Δ|Γ ϕ) ∧ (r � r′) =⇒ (ρ, η1, η2, r′ |=Δ|Γ ϕ).

One way to understand the satisfaction relation is to assume two machines that
execute terms in the context of one specific module. Intuitively, the (ρ, η0, η1, r)
parameter of |= specifies the configurations of those machines: one machine uses
(ρ, η0) to bind free stack variables and identifiers of terms, and the other machine
uses (ρ, η1) for the same purposes; and the internal resource invariants of the mod-
ules in those machines are related by r. The judgment (ρ, η0, η1, r) means that if
two machines are configured by (ρ, η0, η1, r), then the meanings of the terms in
two machines are ϕ-related. Note that we allow different environments for the Γ
context only, not for the Δ context. This is because we are mainly concerned with
parametricity with respect to the heap and only Γ entities, notΔ entities, depend
on the heap.

Figure 6 shows the detailed interpretation of specifications. In the figure, we
make use of the standard semantics of assertions [16]. We now explain three cases
in the definition of |=.

The first case is implication. Our interpretation of implication exploits the spe-
cific notion of accessibility inR. It is equivalent to the standard Kripke semantics
of implication:

for all r′ ∈ R, if r � r′ and (ρ, η0, η1, r′) |= ϕ, then (ρ, η0, η1, r′) |= ψ,

because r � r′ iff r′ = r ∗ s for some s.
The second case is quantification. If a stack variable i is quantified, we consider

one semantic value, but if an identifier x is quantified, we consider two semantic
values. This is again to reflect that in our relational interpretation, we are mainly
concerned with heap-dependent entities. Thus, we only read quantifiers for heap-
dependent entities x relationally.
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For all environments ρ ∈ [[Δ]] and η0, η1 ∈ [[Γ ]] and all worlds r ∈ R,

(ρ, η0, η1, r) |= {P}M{Q} def⇐⇒ [eq([[P ]]ρ) ∗ r]([[M ]]ρ,η0 , [[M ]]ρ,η1 )[eq([[Q]]ρ) ∗ r]
(ρ, η0, η1, r) |= ϕ⊗ P def⇐⇒ (ρ, η0, η1, r ∗ eq([[P ]]ρ)) |= ϕ

(ρ, η0, η1, r) |= E = F
def⇐⇒ [[E]]ρ = [[F ]]ρ

(ρ, η0, η1, r) |= M = N
def⇐⇒ [[M ]]ρ,η0 = [[N ]]ρ,η0 and [[M ]]ρ,η1 = [[N ]]ρ,η1

(ρ, η0, η1, r) |= ϕ⇒ ψ
def⇐⇒ for all s ∈ R, if (ρ, η0, η1, r ∗ s) |= ϕ,

then (ρ, η0, η1, r ∗ s) |= ψ

(ρ, η0, η1, r) |= ∀i. ϕ def⇐⇒ for all v ∈ ref , (ρ[i→v], η0, η1, r) |= ϕ

(ρ, η0, η1, r) |= ∃i. ϕ def⇐⇒ there exists v ∈ ref s.t. (ρ[i→v], η0, η1, r) |= ϕ

(ρ, η0, η1, r) |= ∀x: τ. ϕ def⇐⇒ for all m,n ∈ [[τ ]], (ρ, η0[x→m], η1[x→n], r) |= ϕ

(ρ, η0, η1, r) |= ∃x: τ. ϕ def⇐⇒ there exist m,n ∈ [[τ ]] s.t. (ρ, η0[x→m], η1[x→n], r) |= ϕ

(ρ, η0, η1, r) |= ϕ ∧ ψ def⇐⇒ (ρ, η0, η1, r) |= ϕ and (ρ, η0, η1, r) |= ψ

(ρ, η0, η1, r) |= ϕ ∨ ψ def⇐⇒ (ρ, η0, η1, r) |= ϕ or (ρ, η0, η1, r) |= ψ

Fig. 6. Relational Interpretation of Separation Logic

The last case is invariant extension ϕ ⊗ P . Mathematically, it says that if we
extend the r parameter by the partial equality for predicate P , specification ϕ
holds. Intuitively, this means that some heap cells not appearing in a specification
ϕ satisfy the invariant P .

A specification Δ | Γ � ϕ is valid iff (ρ, η0, η1, r) |= ϕ holds for all (ρ, η0, η1, r).
A proof rule is sound when it is a valid axiom or an inference rule that concludes
a valid specification from valid premises.

Theorem 1. All the proof rules in our logic are sound.

7 Properties of Semantic Quadruples

In this section, we prove two properties of semantic quadruples. The first clarifies
the connection between our new interpretation of Hoare triples and the standard
interpretation, and the second shows how our cps-style semantic quadruples are
related to a more direct way of relating two commands.

First, we consider the relation between semantic quadruples and Hoare triples.
Define an operator cps that cps-transforms a state transformer semantically:

cpsD : (Heap → (Heap + {err})⊥) → (Heap × cont → O)

cpsD(c)
def
= λ(h, k). if (c(h) �∈ {⊥, err}) then k(c(h)) else c(h).

Proposition 1. For all p, q ⊆ Heap and all c ∈ Heap → (Heap ×D + {err})⊥,
quadruple [eq(p)](cps(c), cps(c))[eq(q)] holds iff the below two conditions hold:
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1. for every h in p, either c(h) = ⊥ or c(h) ∈ q, hence c(h) cannot be err;
2. for every h in p and h1 such that h#h1,

(a) if c(h) = ⊥, then c(h • h1) = ⊥,
(b) if c(h) �= ⊥, then c(h) • h1 is defined and equal to c(h • h1).

Note that the first condition is the usual meaning of Hoare triples, and the second
the locality condition of commands in separation logic restricted to heaps in p [16].
Since the locality condition merely expresses the parametricity of commands with
respect to new heaps, the proposition indicates that our interpretation of triples
is the usual one enhanced by an additional parametricity requirement.

Next, we relate our cps-style notion of semantic quadruples to the direct-style
alternative. The notion underlying this relationship is the observation closure, de-
noted (−)⊥⊥. For each FM-cpoD and relation r ⊆ D×D, we define two relations,
r⊥ on [D → O ] and r⊥⊥ on D, as follows:

k1[r⊥]k2
def⇐⇒ ∀d1, d2 ∈ D. (d1[r]d2 =⇒ k1(d1)[eq(G)]k2(d2)),

d1[r⊥⊥]d2
def⇐⇒ ∀k1, k2 ∈ [D → O ]. (k1[r⊥]k2 =⇒ k1(d1)[eq(G)]k2(d2)).

Operator (−)⊥ dualizes a relation on D to one on observations on D, and (−)⊥⊥

closes a given relation r under observations.

Proposition 2. Let r, s be relations inR, and let c1, c2 be functions of type Heap→
(Heap + {err})⊥. A quadruple [r](cps(c1), cps(c2))[s] holds, iff

∀(r′, h1, h2). h1[r ∗ r′]h2 =⇒ (c1(h1)=c2(h2)=⊥ ∨ c1(h1)[(s ∗ r′)⊥⊥]c2(h2)).

This proposition shows that our semantic quadruples are close to what one might
expect at first for relating two commands parametrically. The only difference is
that our quadruple always closes the post-relation s ∗ r′ under observations.

8 Abstraction Theorem

The abstraction theorem below formalizes that well-specified programs (specified
in separation logic with implicit quantification over internal resource invariants
by frame rules) behave relationally parametrically in internal resource invariants.
The easiest way to understand this intuition may be from the corollary following
the theorem.

Some readers might feel that it is too much to call the abstraction theorem a
“theorem” since it really is a trivial corollary of the soundness theorem — but that
is just as it should be: the semantics was defined to achieve that.

Theorem 2 (Abstraction Theorem). If Δ | Γ � ϕ is provable in the logic,
then for all (ρ, η0, η1, r) ∈ [[Δ]]× [[Γ ]]2 ×R, we have that (ρ, η0, η1, r) |= ϕ.

Proof. By Theorem 1, we get that Δ | Γ � ϕ is valid, which is just what the
conclusion expresses. ��

Corollary 1. Suppose that Δ | x: com � {P1}x{Q1} ⇒ {P}M{Q} is provable
in the logic. Then for all (ρ, c0, c1, r), if [eq([[P1]]ρ) ∗ r](c0, c1)[eq([[Q1]]ρ) ∗ r] holds,
then [eq([[P ]]ρ) ∗ r]([[M ]][x→c0], [[M ]][x→c1])[eq([[Q]]ρ) ∗ r] holds as well.
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put1 ≡ (λi. let j = [i] in (free(i); [k] := j) get1 ≡ (λi. let j = [k] in [i] := j)

{i �→ j ∗ k �→ -}put1(i){k �→ -} {i �→ - ∗ k �→ -}get1(i){i �→ - ∗ k �→ -}
put2 ≡ (λi. let k′=[k] in (free(k′); [k]:=i)) get2 ≡ (λi. let k′=[k] in let j=[k′] in [i]:=j)

{i �→ j ∗ ∃k′.k �→ k′ ∗ k′ �→ -}put2(i){∃k′.k �→ k′ ∗ k′ �→ -}
{i �→ - ∗ ∃k′.k �→ k′ ∗ k′ �→ -}get2(i){i �→ - ∗ ∃k′.k �→ k′ ∗ k′ �→ -}

c ≡ (let i′′=new in [i′′]:=i′; put(i′′); get(i′))
Δ | Γ � (∀i.{P1}put(i){Q1} ∧ {P2}get(i){Q2})⇒ {i′ �→ -}c{i′ �→ -}

(where Δ = {i′, k} and Γ = {put: ref → com, get: ref → com})

Fig. 7. Two Implementations of a Buffer and a Simple Client

Intuitively, x corresponds to a module with a single operation, and M a client of
the module. This corollary says that if we prove a property of the clientM , assum-
ing only an abstract external specification {P1}x{Q1} of the module, the client
cannot tell apart two different implementations c0, c1 of the module, as long as
c0, c1 have identical external behavior. The four instances of eq in the proposition
formalize that the external behaviors of c0, c1 are identical and that the client M
behaves the same externally regardless of whether it is used with c0 or c1. The
relation r is a simulation relation for internal resource invariants of c0 and c1.

Proof. Define environments η0, η1 and heap sets p, p1, q, q1 as follows:

η0 = [x→c0], η1 = [x→c1], and (p1, q1, p, q) = ([[P1]]ρ, [[Q1]]ρ, [[P ]]ρ, [[Q]]ρ).

By Theorem 2, we have, for any r, that (ρ, η0, η1, r) |= {P1}x{Q1} ⇒ {P}M{Q}.
From this, we derive the conclusion of the proposition:

(ρ, η0, η1, r) |= {P1}x{Q1} ⇒ {P}M{Q}
=⇒ (∀s ∈ R. (ρ, η0, η1, r ∗ s) |= {P1}x{Q1} =⇒ (ρ, η0, η1, r ∗ s) |= {P}M{Q})
=⇒ ((ρ, η0, η1, r) |= {P1}x{Q1} =⇒ (ρ, η0, η1, r) |= {P}M{Q})
=⇒ ([eq(p1) ∗ r](c0, c1)[eq(q1) ∗ r] =⇒ [eq(p) ∗ r]([[M ]]η0 , [[M ]]η1)[eq(q) ∗ r]). ��

9 Example

For reasons of space we only include one very simple example (but at least it does
involve ownership transfer).

We will consider a mutable abstract data type that is a buffer of size one. It
has operations put and get. Intuitively, put(i) stores the value found at i in the
buffer and get(i) retrieves the value stored in the buffer and stores it at i. Let
P1 ≡ i �→ j, and Q1 ≡ emp, and P2 ≡ i �→ -, and Q2 ≡ i �→ -, where - denotes
existentially quantified variables. We assume the following abstract specifications
of this mutable abstract data type: {P1}put(i){Q1} and {P2}get(i){Q2}.

Figure 7 shows two implementations of the buffer and a client. The figure also
includes the concrete specifications for the implementation and a specification for
the buffer. Note that the first implementation just uses one cell for the buffer and
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that the implementation follows the intuitive description given above. The second
implementation uses two cells for the buffer. The additional cell is used to hold the
cell pointed to by i itself. Note that this additional cell is transferred from the caller
of put2(i), i.e., a client of the buffer. Finally, the specification of the client describes
the safety property of c, assuming the abstract specification for the buffer.

Pick ρ ∈ [[{i′, k}]], and define f1, f2, g1, g2, c1, c2 as follows:

fi
def
= [[puti]]ρ,[], gi

def
= [[geti]]ρ,[], ci

def
= [[c]]ρ,[put→fi,get→gi].

Now, by the Abstraction Theorem, we get that, for all r,
(
∀v ∈ ref . [eq([[P1]]ρ[i→v]) ∗ r](f1(v), f2(v))[eq([[Q1]]ρ[i→v]) ∗ r] ∧

[eq([[P2]]ρ[i→v]) ∗ r](g1(v), g2(v))[eq([[Q2]]ρ[i→v]) ∗ r]
)

⇒ [eq([[i′ �→ -, -]]ρ) ∗ r](c1, c2)[eq([[i′ �→ -, -]]ρ) ∗ r].
(1)

We now sketch a consequence of this result; for brevity we allow ourselves to be a
bit informal. Fix location k and let r be the following simulation relation between
the two implementations: r = {(h1, h2) | ∃j. h1 = [k→j] ∧ ∃k′. h2 = [k→k′] •
[k′→j]}. Then one can verify that the antecedent of the implication in (1) holds,
and thus conclude that [eq([[i′ �→ -]]ρ) ∗ r](c1, c2)[eq([[i′ �→ -]]ρ) ∗ r] holds. Take
(h1, h2) ∈ eq([[i′ �→ -]]ρ) ∗ r, and denote the result of running c1 on h1 by h′1,
and the result of running c2 on h2 by h′2. We then conclude that h′1 will be of the
form h′11 • h′12 and that h′2 will be of the form h′21 • h′22 with (h′12, h′22) ∈ r and
with (h′11, h

′
21) ∈ eq([[i′ �→ -]]ρ).

Thus the relation between the internal resource invariants is maintained and,
for the visible part, c1 and c2 both produce the same heap with exactly one cell.

10 Conclusion and Future Work

We have succeeded in defining the first relationally parametric model of separation
logic. The model captures the informal idea that well-specified clients of mutable
abstract data types should behave parametrically in the internal resource invari-
ants of the abstract data type.

We see our work as a first step towards devising a logic for reasoning about mu-
table abstract data types, similar in spirit to Abadi and Plotkin’s logic for para-
metricity [14,5]. To this end, we also expect to make use of the ideas of relational
separation logic in [19] for reasoning about relations between different programs
syntactically. The logic should include a link between separation logic and rela-
tional separation logic so that one could get a syntactic representation of the se-
mantic Abstraction Theorem and its corollary presented above.

One can also think of our work as akin to the O’Hearn-Reynolds model for ideal-
ized algol based on translation into a relationally parametric polymorphic linear
lambda calculus [10]. In loc. cit. O’Hearn and Reynolds show how to provide a
better model of stack variables for idealized algol by making a formal connection
to parametricity. Here we provide a better model for the more unwieldy world of
heap storage by making a formal connection to parametricity.
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As mentioned in Section 4, the conjunction rule is not sound in our model. This
is a consequence of our cps-style interpretation. We don’t know whether it is pos-
sible to develop a parametric model in which the conjunction rule is sound.

Future work further includes developing a parametric model for the higher-
order version of separation logic with explicit quantification over internal resource
invariants. Finally, we hope that ideas similar to those presented here can be used
to develop parametric models for other recent approaches to mutable abstract
data types (e.g., [1]).
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Abstract. We consider the model of priced (a.k.a. weighted) timed au-
tomata, an extension of timed automata with cost information on both
locations and transitions. We prove that model-checking this class of
models against the logic WCTL, CTL with cost-constrained modalities,
is PSPACE-complete under the “single-clock” assumption. In contrast, it
has been recently proved that the model-checking problem is undecid-
able for this model as soon as the system has three clocks. We also prove
that the model-checking of WCTL∗ becomes undecidable, even under
this “single-clock” assumption.

1 Introduction

An interesting direction of real-time model-checking that has recently received
substantial attention is the extension and re-targeting of timed automata tech-
nology towards optimal scheduling and controller synthesis [1,18,7]. In particular,
as part of this effort, the notion of priced (or weighted) timed automata [4,3] has
been promoted as a useful extension of the classical model of timed automata
allowing continuous consumption of resources (e.g. energy) to be modelled and
analyzed.

A number of optimization problems have been shown decidable for priced
timed automata including minimum-cost reachability [4,3], optimal (minimum
and maximum cost) reachability in multi-priced settings [17] and cost-optimal
infinite schedules [6,7].

Unfortunately, the addition of cost comes with a price: certain problems be-
come undecidable for priced timed automata. In fact, in [11] it has recently
been shown that the problem of determining cost-optimal winning strategies for
priced timed games is not computable. Also, by the same authors, it has been
shown that the model-checking problem for priced timed automata w.r.t. WCTL
—CTL with cost-constrained modalities— is undecidable [10]. In [5] it has been
shown that these negative results hold even for priced timed (game) automata
with no more than three clocks.
� Partly supported by ACI “Sécurité & Informatique” CORTOS.
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However, when restricting to the setting of priced timed game automata with
a single clock, the most recent work in [9] shows that the optimal cost of win-
ning and (almost-) optimal strategies are computable problems. In this paper
we focus on model-checking problems for priced timed automata with a single
clock. In particular we show that the model-checking problem with respect to
WCTL is PSPACE-complete under the “single clock” assumption. This is rather
surprising as model-checking TCTL (the only cost variable is the time elapsed)
under the same assumption is also PSPACE-complete [15]. We also prove that the
model-checking of WCTL∗ becomes undecidable, even under this “single clock”
assumption.

The paper is organized as follows: In Section 2, we present the model of priced
timed automata, the logic WCTL and develop an example. In Section 3, we
state the main result of the paper. In Section 4, we study the granularity which
is required for model-checking the logic WCTL. In Section 5, we first propose
an EXPTIME algorithm for model-checking one-clock priced timed automata
against WCTL formulas, then refine it to get a PSPACE algorithm, and finally
give an example. In Section 6, we prove that model-checking one-clock priced
timed automata against WCTL∗ formulas is undecidable.

2 Preliminaries

2.1 Priced Timed Automata

Let X be a set of clock variables. The set of clock constraints (or guards) over X
is defined by the grammar “g ::= x ∼ c | g ∧ g” where x ∈ X , c ∈ IN and
∼∈ {<,≤,=,≥, >}. The set of all clock constraints is denoted B(X ). When a
valuation v : X → IR+ satisfies a clock constraint g is defined in a natural way
(v satisfies x ∼ c whenever v(x) ∼ c), and we then write v |= g. We denote
by v0 the valuation that assigns zero to all clock variables, by v+ t (t ∈ IR+) the
valuation that assigns v(x) + t to all x ∈ X , and for R ⊆ X we write v[R → 0]
to denote the valuation that assigns zero to all variables in R and agrees with v
for all X �R.

Definition 1. A priced timed automaton (PTA for short) is a tuple A = (Q, q0,
X , T, η, (Pi)1≤i≤p) where Q is a finite set of locations, q0 ∈ Q is the initial
location, X is a set of clocks, T ⊆ Q×B(X )× 2X ×Q is the set of transitions,
η : Q → B(X ) defines the invariants of each location, and Pi : Q ∪ T → N is a
cost (or price) function.

The semantics of a PTA A is given as a labeled timed transition system T =
(S, s0,→) where S ⊆ Q × IRX+ is the set of states, s0 = (q0, v0)1 is the initial
state, and the transition relation → ⊆ S × IRp

+ × S is defined as:

1. (discrete transition) (q, v) c−→ (q′, v′) if there exists (q, g, R, q′) ∈ E s.t. v |= g,
v′ = [R← 0]v, v′ |= η(q′), and ci = Pi(q, g, R, q′) for every 1 ≤ i ≤ p;

1 v0 assigns zero to each clock.
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2. (delay transition) (q, v) c−→ (q, v + t) if ∀0 ≤ t′ ≤ t, v + t′ |= η(q), and
ci = t · Pi(q) for every 1 ≤ i ≤ p.

A run of a PTA is a path in the underlying transition system. Given a run

� = s0
c0−→ s1

c1−→ · · · c
n−1

−−−→ sn, its ith-cost is Pi(�) =
∑n−1
j=0 c

j
i . A position along

a run � is an occurrence of a state (q, v) along �. Let π be such a position, then
�[π] denotes the corresponding state, whereas �≤π denotes the finite prefix of �
ending at position π.

Remark 1. In the model of priced timed automata, the cost variables are ob-
servers : the values of these variables don’t constrain the behaviour of the system
(the behaviours of a priced timed automaton are those of the underlying timed
automaton), but can be used as evaluation functions. For instance, problems
such as “optimal reachability” [4,3], “optimal infinite schedules” [6] or “optimal
reachability timed games” [2,8,11,5] have recently been investigated. The prob-
lem we consider in this paper is closely related to these kinds of problems: we
will use WCTL as a language for evaluating the performances of a system.

2.2 The Logic WCTL

Let AP be a set of atomic propositions. The logic WCTL2 [10] extends CTL with
cost constraints. Its syntax is given by the following grammar:

WCTL � φ ::= true | a | ¬φ | φ ∨ φ | EφUP∼cφ | AφUP∼cφ

where a ∈ AP, P is a cost function, c ranges over N, and ∼ ∈ {<,≤,=,≥, >}.
We interpret formulas of WCTL over labeled PTA, i.e. PTA having a labeling

function � which associates with every location q a subset of AP.

Definition 2. Let A be a labeled PTA. The satisfaction relation of WCTL is
defined over configurations (q, v) of A as follows:

(q, v) |= true
(q, v) |= p ⇔ a ∈ �(q)

(q, v) |= ¬φ ⇔ (q, v) �|= φ
(q, v) |= φ1 ∨ φ2 ⇔ (q, v) |= φ1 or (q, v) |= φ2

(q, v) |= Eφ1UP∼cφ2 ⇔ there is an infinite run � in A
from (q, v) s.t. � |= φ1UP∼cφ2

(q, v) |= Aφ1UP∼cφ2 ⇔ any infinite run � in A from (q, v)
satisfies � |= φ1UP∼cφ2

� |= φ1UP∼cφ2 ⇔ there exists π > 0 position along � s.t.
�[π] |= φ2, for all position π′ > 0
before π on �, �[π′] |= φ1,
and P (�≤π) ∼ c

2 WCTL stands for “Weighted CTL”, following [10] terminology. It would have been
more natural to call it “Priced CTL” (PCTL) in our setting, but this would have
been confusing with “Probabilistic CTL” [13].
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If A is not clear from the context, we may write (q, v),A |= φ instead of simply
(q, v) |= φ.

As usual, we will use shortcuts as E FP∼cφ ≡ E trueUP∼cφ, or AGP∼cφ ≡
¬E FP∼c¬φ. Moreover, if the cost function P is unique or clear from the context,
we may write φU∼cψ instead of φUP∼cψ.

We write WCTL∗ for the extension of WCTL similar to the extension CTL∗

of CTL [12]: temporal modality U∼c can then be nested independently of path
quantifiers.

2.3 Example

The 1PTA of Fig. 1 models a never-ending process of repairing problems, which
are bound to occur repeatedly with a certain frequency. The repair of a problem
has a certain cost, captured in the model by the cost variable c. As soon as a
problem occurs (modeled by the Problem location) the value of c grows with
rate 3, until actual repair is taking place in one of the locations Cheap (rate 2)
or Expensive (rate 4). At most 20 time units after the occurrence of a problem
it will have been repaired one way or another. In this setting we are interested
in properties concerning the cost of repairs as stated by the following WCTL
formulas (all satisfied by the model):

AG
(
Problem =⇒ E Fc≤47OK

)

AG
(
Problem =⇒ A Fc≤56OK

)

AG
(
¬E (OK Ut≥8(Problem ∧ ¬E Fc<30OK))

)

where t holds for the time elapsed (special cost variable with rate 1).
Here the first property claims that whenever a problem occurs it may be

repaired (i.e. reach the location OK) within a total cost of 47. In fact Fig. 2
gives the minimum cost of repair —as well as an optimal strategy— for any
state of the form (Problem, x) with x ∈ [0, 10]. Correspondingly, the minimum

ṗ = 0
x ≤ 9

ṗ = 3
x ≤ 10

ṗ = 2
x < 20

ṗ = 4
x ≤ 15

x ≥
2

x ≥
4

x = 20, x
:= 0, p+

= 5

x = 15, x := 0

Problem
Cheap

ExpensiveOK

Fig. 1. Repair problem as a PTA
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Fig. 2. Minimum cost of repair and as-
sociated strategy in location Problem
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cost of reaching OK from states of the form (Cheap, x) (resp. (Expensive, x)) is
given by the expression 45− 2x (resp. 60− 4x). The second property states that
no matter which method is used for the repair, it will cost no more than 56.
Finally, the third property claims that whenever the system has been OK for at
least 8 time units before a problem occurs, then there must be a way of solving
the problem with a total cost less than 30. In fact, as indicated in Fig. 2, any
state (Problem, x) with x ≥ 20

3 satisfies the WCTL property E Fc≤30OK.

3 Main Result

We focus on one-clock priced timed automata (1PTA for short), i.e. priced timed
automata where |X | = 1. The main result of this paper is the following theorem:

Theorem 3. Model-checking WCTL on 1PTA is PSPACE-complete.

The PSPACE lower bound is a consequence of the PSPACE-hardness of the model-
checking of TCTL, the restriction of WCTL to time constraints, over 1PTA [15].

The PSPACE upper bound is rather involved, and will be done in two steps:
i) first we will exhibit a set of regions which will be correct for model-checking
WCTL formulas, see Section 4; ii) then we will use this result to propose a
PSPACE algorithm for model-checking WCTL, see Section 5.

Finally, it is worth reminding here that the model-checking of WCTL over
priced timed automata with three clocks is undecidable [5].

4 Sufficient Granularity for Model-Checking WCTL

The proof of Theorem 3 is rather involved and partly relies on the following
proposition, which exhibits a set of regions on which truth of WCTL formulas
is uniform.

Proposition 4. Let Φ be a WCTL formula and let A be a 1PTA. Then there
exist finitely many constants 0 = a0 < a1 < . . . < an < an+1 = +∞ s.t. for
every location q of A, for every 0 ≤ i ≤ n, the truth of Φ is uniform over
{(q, x) | ai < x < ai+1}. Moreover,

– {a0, ..., an} contains all the constants appearing in clock constraints of A;
– the constants are integral multiples of 1/C�(Φ) where � (Φ) is the constrained

temporal height of Φ, i.e. the maximal number of nested constrained modal-
ities in Φ, and C is the lcm of all positive costs labeling a location of A;

– an equals the largest constant M appearing in the guards of A;
– n ≤M · C�(Φ) + 1.

As a corollary, we recover the partial decidability result of [10], stating that
the model-checking of 1PTA with a stopwatch cost3 against WCTL formulas is
decidable using classical one-dimensional regions of timed automata (i.e. with
granularity 1).
3 I.e. cost with rates in {0, 1}.
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Proof. The proof of this proposition is by structural induction on Φ. We focus on
the case when Φ = EφUP∼cψ (we will simply write Φ = EφU∼cψ): the cases of
atomic propositions, boolean combinations are straightforward, unconstrained
modalities require no refinement of the granularity (a basic CTL algorithm han-
dles this case), and the other modalities will be reduced to this main case.

Assume that the result has been proved for WCTL subformulas φ and ψ, and that
we have merged all constants for φ and ψ: we thus have constants 0 = a0 < a1 <
. . . < an < an+1 = +∞ such that for every location q of A, for every 0 ≤ i ≤ n,
the truth of φ and that of ψ are both uniform over {(q, x) | ai < x < ai+1}. The
granularity of these constants is 1/Cmax(�(φ),�(ψ)) = 1/C�(Φ)−1. We will exhibit
extra constants such that the above proposition then also holds for formula
Φ = EφU∼cψ. For the sake of simplicity, we will call regions all elementary
intervals (ai, ai+1) and singletons {ai}. We also assume that A has no discrete
costs (i.e. P (T ) = {0}). The general case would be handled in a similar way,
and will be developed in the long version of this paper.

In order to compute the set of states satisfying EφU∼cψ, we compute for every
state (q, x) all costs of paths from (q, x) to some region (q′, r), along which φ con-
tinuously holds, and such that a ψ-state can be reached immediately from (q′, r).
We then check whether we can achieve a cost satisfying “∼ c”. We thus explain
how we compute the set of possible costs between a state (q, x) and a region (q′, r)
in A.

For each index i, we restrict the automaton A to transitions whose guards
contain the interval (ai, ai+1), and that do not reset the clock. We denote by Ai
this restricted automaton. Let q and q′ be two locations of Ai. As stated by the
following lemma, the set of costs of paths between (q, ai) and (q′, ai+1) is an
interval that can be easily computed:

Lemma 5. Let Si(q, q′) be the set of locations that are reachable from (q, ai)
and co-reachable from (q′, ai+1) in Ai (assuming ai+1 �= +∞), and assume it
is non-empty. Let ci,q,q

′
min and ci,q,q

′
max be the minimum and maximum costs among

the costs of locations in Si(q, q′). Then the set of all possible costs of paths going
from (q, ai) to (q′, ai+1) in Ai is an interval 〈(ai+1−ai)·ci,q,q

′
min ; (ai+1−ai)·ci,q,q

′
max 〉.

The interval is left-closed iff there exist two locations r and s (with possibly r = s)
in Si(q, q′) with cost ci,q,q

′
min such that4(q, ai) �∗Ai

(r, ai), (r, ai) �∗Ai
(s, ai+1), and

(s, ai+1) �∗Ai
(q′, ai+1). The interval is right-closed iff there exists two locations

r and s in Si(q, q′) with cost ci,q,q
′

max such that (q, ai) �∗Ai
(r, ai), (r, ai) �∗Ai

(s, ai+1), and (s, ai+1) �∗Ai
(q′, ai+1).

The conditions on left/right-closures characterize the fact that it is possible to
instantaneously reach/leave a location with minimal/maximal cost, or if a small
positive delay has to be waited (due to a strict guard).

Proof. Obviously the costs of all paths in Ai belong to the interval (ai+1 − ai) ·
[ci,q,q

′
min , ci,q,q

′
max ]. We will now prove that the set of costs is an interval containing

(ai+1 − ai) · (ci,q,q
′

min ; ci,q,q
′

max ).
4 The notation α �∗

Ai
α′ means that there is a path in Ai from α to α′.
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Let τmin (resp. τmax) be a sequence of transitions in Ai leading from (q, ai)
to (q′, ai+1) and going through a location with minimal (resp. maximal) cost.
Easily enough, the possible costs of the paths following τmin (resp. τmax) form an
interval whose left (resp. right) bound is ci,q,q

′
min ·(ai+1−ai) (resp. ci,q,q

′
max ·(ai+1−ai)).

Now, if c and c′ are the respective costs of q and q′, then 1
2 ·(c+c′) ·(ai+1−ai)

is in both intervals. Indeed, the path following τmin (resp. τmax) which delays
1
2 · (ai+1 − ai) time units in q, then directly goes to q′ and waits there for the
remaining 1

2 · (ai+1 − ai) time units achieves the above-mentioned cost. This
implies that the set of all possible costs is an interval.

The bound ci,q,q
′

min · (ai+1 − ai) is reached iff there is a path from (q, ai)
to (q′, ai+1) which delays only in locations with cost ci,q,q

′
min . This is precisely

the condition expressed in the lemma. The same holds for the upper bound
ci,q,q

′
max · (ai+1 − ai). �

Similar results clearly hold for other kinds of regions:

– between a state (q, ai) and a region (q′, (ai, ai+1)) with ai+1 �= +∞, the set
of possible costs is an interval 〈0; ci,q,q

′
max · (ai+1− ai)), where 0 can be reached

iff it is possible to go from (q, ai) to some state (q′′, ai) with P (q′′) = 0.
– between a state (q, x), with x ∈ (a1, ai+1), and (q′, ai+1), the set of costs

is (ai+1− x) · 〈ci,q,q
′

min ; ci,q,q
′

max 〉, with similar conditions as above for the bounds
of the interval.

– between a state (q, x), with x ∈ (a1, ai+1), and region (q′, (ai, ai+1)) (assum-
ing ai+1 �= +∞), the set of possible costs is [0, ci,q,q

′
max · (ai+1 − x));

– between a state (q, an) and a region (q′, (an, an+1)) (with an+1 = +∞), the
set of possible costs is either [0, 0], if no positive cost rate is reachable and
co-reachable, or 〈0,+∞) otherwise. If the latter case, 0 can be achieved iff
it is possible to reach a state (q′′, an) with P (q′′) = 0;

– between a state (q, x), with x ∈ (an, an+1) and an+1 = +∞, and a re-
gion (q′, (an, an+1)), the set of costs is either [0, 0] or [0,+∞), with the same
conditions as previously.

We use these computations and build a graph G labeled by intervals which
will store all possible costs between symbolic states (i.e. pairs (q, r), where q is a
location and r a region) in A. Vertices of G are pairs (q, {ai}) and (q, (ai, ai+1)),
and tuples (q, x, {ai}) and (q, x, (ai, ai+1)), where q is a location of A. Their roles
are as follows: vertices of the form (q, x, r) are used to initiate a computation,
they represent a state (q, x) with x ∈ r. States (q, {ai}) are “regular” steps in the
computation, while states (q, (ai, ai+1)) are used either for finishing a computa-
tion, or just before resetting the clock (there will be no edge from (q, (ai, ai+1))
to any (q′, {ai+1})).

Edges of G are defined as follows:

– (q, {ai}) → (q′, {ai+1}) if there is a path from (q, ai) to (q′, ai+1). This
edge is then labeled with an interval 〈(ai+1 − ai) · ci,q,q

′
min ; (ai+1 − ai) · ci,q,q

′
max 〉,

the nature of the interval (left-closed and/or right-closed) depending on the
criteria exposed in Lemma 5.
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– (q, {ai})→ (q′, {ai}) if there is an instantaneous path from (q, ai) to (q′, ai)
in A, the edge is then labeled with the interval [0, 0] (remember that we
assumed there are no discrete costs on transitions of A).

– (q, {ai})→ (q′, {a0}) if there is a transition in A enabled when the value of
the clock is ai and resetting the clock. It is labeled with [0, 0].

– (q, (ai, ai+1))→ (q′, {a0}) if there is a transition in A enabled when the value
of the clock is in (ai, ai+1) and resetting the clock. It is labeled with [0, 0].

– (q, {ai})→ (q′, (ai, ai+1)) if there is a path from (q, ai) to some (q′, α) with
ai < α < ai+1. This edge is labeled with the interval 〈0; (ai+1 − ai) · ci,q,q

′
max ).

– (q, x, {ai})→ (q, {ai}) labeled with [0, 0].
– (q, x, (ai, ai+1))→ (q′, {ai+1}) if there is a path from some (q, α) with ai <

α < ai+1 to (q′, ai+1). This edge is labeled with (ai+1 − x) · 〈ci,q,q
′

min ; ci,q,q
′

max 〉.
– (q, x, (ai, ai+1))→ (q′, (ai, ai+1)) labeled with [0, (ai+1 − x) · ci,q,q

′
max ).

Figure 3 represents one part of this graph. Note that each path π of this graph
is naturally associated with an interval ι(π) (possibly depending on variable x
if we start from a node (q, x, (ai, ai+1))) by summing up all intervals labeling
transitions of π.

q,x,{0} q,x,{ai} q,x,(ai,ai+1) q,x,{ai+1}

q′,x,{0} q′,x,{ai} q′,x,(ai,ai+1) q′,x,{ai+1}

... ... ... ...

q,{0} q,{ai} q,(ai,ai+1) q,{ai+1}

q′,{0} q′,{ai} q′,(ai,ai+1) q′,{ai+1}

... ... ... ...

Fig. 3. (Schematic) representation of the graph G (intervals omitted)

The correctness of graphG w.r.t. costs is stated by the following lemma, which
is a direct consequence of the previous investigations.

Lemma 6. Let q and q′ be two locations of A. Let r and r′ be two regions, and
let α ∈ r. Let d ∈ R

+. There exists a path π in G from a state (q, x, r) to (q′, r′)
with cost d ∈ ι(π)(α) if, and only if, there is a path in A with total cost d, and
going from (q, α) to some (q′, β) with β ∈ r′.
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Corollary 7. Fix two regions r and r′. Then the set of possible costs of paths
in G from (q, x, r) to (q′, r′) is of the form

⋃

m∈N

〈αm − βm · x;α′m − β′m · x〉

(possibly with βm and/or β′m = 0, and/or α′m = +∞). Moreover,

– all constants αm and α′m are either integral multiples of 1/Cmax(�(φ),�(ψ))

or +∞, and constants βm and β′m are either costs of the automaton or 0;
– if r = (an,+∞), then βm = β′m = 0 for all m.

Proof (Sketch). The set of possible costs can be computed by guessing the Parikh
image of a possible path. Then the set of possible costs along that path has the
form given in the statement. And as the set of possible Parikh images is countable,
we obtain the (possibly infinite) union of intervals of the corollary. �
Lemma 8. For every location q, the set of clock values x such that (q, x) satisfies
EφU∼cψ is a finite union of intervals. Moreover,

– the bounds of those intervals are integral multiples of 1/C�(Φ);
– the largest finite bound of those intervals is at most the maximal constant

appearing in the guards of the automaton.

Proof (Sketch). It is possible to prove that the (possibly infinite) union of inter-
vals of the previous corollary can be reduced, for checking formula EφU∼cψ, to
a finite union of such intervals.

Then, new constants α we need to consider for checking EφU∼cψ are such
that αm − βm · α = c, i.e. α = (αm − c)/βm. Thus α is an integral multiple of
1/C�(Φ). �
This concludes the induction step for formula EφU∼cψ when the automaton
has no discrete cost. Extending this result to other modalities and to automata
with discrete cost is a rather technical matter that gives no new insights on the
model-checking problem; we thus postpone the proofs of these two extensions to
the full version of this paper. �
Remark 2. The exponential number of constants ai’s is unavoidable in general.
Indeed, consider the 1PTA A displayed on Fig.4. Using a WCTL formula, we
will require that the cost is exactly 4 between a and b. That way, if clock x
equals x0.x1x2x3 . . . xn . . . (this is the binary representation of a real in the
interval (0, 2)) when leaving a, then it will be equal to x1.x2x3 . . . xn . . . in b. We
consider the WCTL formula φ(X) = E

(
(a ∨ b)U=0(¬a ∧ E (¬bU=4(b ∧ X)))

)
,

where X is a formula we will specify. Then formula φ(E F=0c) states that we
can go from a to b with cost 4, and that x = 0 when arriving in b (since we
can fire the transition leading to c). From the remark above, this can only be
true if x = 0 or x = 1 in a. Now, consider formula φ(E F=0c ∨ φ(E F=0c)). If
it holds in state a, then state c can be reached after exactly one or two rounds
in the automaton, i.e., if the value of x is in {0, 1/2, 1, 3/2}. Clearly enough,
nesting φ n times characterizes values of the clocks of the form p/2n−1 where p
is an integer strictly less than 2n.
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ṗ=1

ṗ=4

ṗ=2

ṗ=2

ṗ=1

ṗ=1 ṗ=1

x<1

x≥1

x=2

x:=0

x=2

x:=0

x<2

x<2

x=0

a b c

Fig. 4. The 1PTA A

5 Algorithms and Complexity

In this section, we provide two algorithms for model-checking WCTL on 1PTA.
The first algorithm runs in EXPTIME, whereas the second one runs in PSPACE,
thus matching the PSPACE lower bound. However, it is easier to first explain the
first algorithm, and then reuse part of it in the second algorithm. Finally, we will
pursue the example of Subsection 2.3 for illustrating our PSPACE algorithm.

5.1 An EXPTIME Algorithm

The correctness of the algorithm we propose for model-checking 1PTA against
WCTL properties relies on the properties we have proved in the previous section:
if A is an automaton with maximal constant M , writing C for the l.c.m. of
all costs labeling a location, and if Φ is a WCTL formula of size n, then the
satisfaction of Φ is uniform on the regions (m/Cn; (m+1)/Cn) with m < M ·Cn,
and also on (M ; +∞). The idea is thus to test the satisfaction of Φ for each state
of the form (q, k/2Cn) for 0 ≤ k ≤ (M · 2Cn) + 1 (i.e. at the bounds and in the
middle of each region).

To check the truth of Φ = EφUP∼cψ in state (q, x) with x = k/2Cn, we will
use the graph G that we have defined in Section 4. From the state (q, x, r) of G,
where r is the region containing k/2Cn, we check if EφU∼cψ (say) holds by
non-deterministically discovering a witness. This requires the following lemma:

Lemma 9. Let s be the smallest positive cost in A, and C be the lcm of all
positive costs of A. Let q be a location of A, and x ∈ R

+. Let Φ = EφU∼cψ
be a WCTL formula of size n. Then (q, x) |= Φ iff there exists a trajectory
in A, from (q, x) and satisfying φU∼cψ, and whose projection in G visits at
most N = �c · Cn/s�+ 2 times each state of G.

Proof (Sketch). Let τ be a trajectory in A, starting from (q, x) and satisfying
φU∼cψ. To that trajectory corresponds a trajectory ρ in G, starting in (q, x, r).
Consider a cycle in that trajectory ρ: either it has a global cost interval [0, 0], in
which case it can be removed and still yields a witnessing trajectory; or it has a
global cost interval of the form 〈a, b〉with b > 0. In that case, letting s be the small-
est positive cost of the automaton, we know that b ≥ s/Cn. Now, if some state
of G is visited (strictly) more than N = �c · Cn/s�+ 2 times along ρ, we build a
trajectory ρ′ from ρ by removing extraneous cycles, in such a way that each state
of G is visited at most N times along ρ (and that ρ starts and ends in the same
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states). Since we assumed that ρ does not contain cycles with cost interval [0; 0],
we know that the upper bound of the accumulated cost along ρ′ is above c. Also,
the lower bound of the accumulated costs along ρ′ is less than that of ρ. Since ρ
“contains” a trajectory witnessing φU∼cψ, the cost interval of ρ contains a value
satisfying ∼ c, thus so does the cost interval of ρ′. In other words, ρ′ still contains
a trajectory witnessing φU∼cψ. �

We now describe our algorithm: assuming we have computed, for each state q
ofA, the intervals of values of x where φ (resp. ψ) holds, we non-deterministically
guess the successive states of a trajectory inG. At each step, we also have to guess
the intermediary states that are visited (between (q, {ai}) and (q′, {ai+1})), and
check that they satisfy φ when x is in (ai, ai+1). This verification can be achieved
in PSPACE. Moreover, at each step of this algorithm for checking that (q, x) |=
EφU∼cψ, we only need to store a polynomial amount of information: the current
position in G, the number of steps so far, and the interval of costs accumulated
so far. At each point, the algorithm may non-deterministically decide to go to
a ψ-state, and will check that the cost constraint is satisfied. In that case, it
returns yes. Otherwise, when the number of steps reaches |G| · (�c · Cn/s�+ 2)
(which is exponential), the procedure stops and returns no.

Thus, our procedure for checking that (q, x) |= EφU∼cψ is in PSPACE. Still,
since we store all the intervals for each location of the automaton and each
subformula, the whole algorithm requires an exponential amount of space, but
it runs in exponential time.

The other existential modalities are handled by reducing to the case of E U∼c,
as explained in Section 4. We assume that no universal modality appears in the
formula by replacing them with negated existential ones.

5.2 A PSPACE Algorithm

The PSPACE algorithm will reuse some parts of the previous algorithm, but
it will improve on space performance by storing only the minimal information
required, preferring to spend time on reconstructing model-checking information
rather than to spend space on storing it. Our method is thus similar in spirit to
the space-efficient, on-the-fly algorithm for TCTL presented in [14].

We will then need, while guessing a witness for EφUP∼cψ, to check that all
intermediary states satisfy formula φ. As φ might be itself a WCTL formula
with several nested modalities, we will fork a new computation of our algorithm
on formula φ from each intermediary state. The maximal number of threads
running simultaneaously is at most the depth of the parsing tree of formula Φ.
When a thread is preempted we only need to store a polynomial amount of
information in order to be able to resume it. Indeed, it is sufficient to store for
each preempted thread a triple (α,K, I) where α is a node a graph G, K is the
value of a counter bounded by |G| ·(�c · Cn/s�+ 2) counting the number of steps
of the path we are guessing (we know that a witness can be bounded by this
constant), and I is an interval corresponding to the accumulated cost along the
path being guessed.
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The algorithm thus runs as follows: we start by labeling the root of the tree
by α = (q, x, r), K = 0 and I = [0; 0]. Then we guess a path in G starting
from (q, x, r), and when a new state (q′, r′) is added, we increment the value
of K, update the value of the interval, as described in the previous section.
Then, either we choose to verify that the state satisfies φ, or the constraint
P ∼ c can be satisfied by the new interval and we verify in addition that the
new state satisfies ψ. Moreover, we need to prove that all intermediary states
(see the EXPTIME algorithm) also satisfy φ (it is of course sufficient to check
intermediary with clock values of the form h/2Cn). All these verifications of φ or
ψ are done by starting a new thread in the computation, and a new guess of path
can start for a subformula of the original one... when all these computations are
finished, we can continue guessing the original path for formula Φ, and so on.

The number of nested guesses can be bounded by the depth of the parsing
tree of Φ, because when a new thread starts, it starts from a node which is a
child of the previous node. Thus, the memory which is needed in this algorithm
is the parsing tree of formula Φ with each node labeled by a tuple which can be
stored in polynomial space, which leads to a globally PSPACE algorithm.

Example 1. We illustrate our PSPACE algorithm on our initial example, with
formula Φ = ¬E (OK Ut≤8(Problem ∧ ¬EFc<30OK)). We write g = 1/C2 for
the resulting granularity as defined in Prop. 4, and consider a starting state,
e.g. (OK, x = mg).

Fig. 5 show three steps of our algorithm. The first step represents the first
iteration, where subformula OK is satisfied at the beginning of the trajectory.
At step 2, the execution goes to (OK, x + g): we check that the left-hand-side
formula still holds in (OK, x+ g) (as depicted), but also in intermediary states.
The third figure corresponds to k steps later, when the algorithm decides to go to
the right-hand-part of E Ut≤8. In that case, of course, it is checked that kg ≤ 8,
and then goes on verifying the second until subformula.

¬
(OK, x, r)
step : 0
cost : [0, 0]

E Ut≤8

(OK, x, r)
step : 0
cost : [0, 0]

OK
(OK, x, r)
step : 0
cost : [0, 0]

∧

Problem ¬

E Uc<30

� OK

¬
(OK, x, r)
step : 0
cost : [0, 0]

E Ut≤8

(OK, {x + g})
step : 1
cost : [g, g]

OK
(OK, {x + g})
step : 0
cost : [0, 0]

∧

Problem ¬

E Uc<30

� OK

¬
(OK, x, r)
step : 0
cost : [0, 0]

E Ut≤8

(Problem, {x + kg})
step : k
cost : [kg, kg]

OK ∧ (Problem, {x + kg})
step : 0
cost : [0, 0]

Problem ¬

E Uc<30

� OK

...

Fig. 5. Execution of our PSPACE algorithm on the initial example
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6 Undecidability of WCTL∗ Model-Checking

The logic WCTL∗ is an extension of WCTL that allows nesting of modalities
without existential or universal quantifications. We prove that it is undecidable
on 1PTAs. To our knowledge, the complexity of TCTL∗ model-checking has
not been studied on one-clock timed automata. However, it is in EXPSPACE on
durational Kripke structures, a discrete-time extension of Kripke structures [16].

Theorem 10. Model-checking WCTL∗ over 1PTA is undecidable.

Proof (Sketch). We encode the halting problem for a two-counter machine M
as a model-checking problem for WCTL∗ over 1PTA. The counters c1 and c2 are
encoded by clock x being equal to 1/(2c1 · 3c2).

We first explain how we en-

1
qj

1 2 1
qk

x=1

x:=0

Fig. 6. Incrementing a counter

code an instruction incrementing
counter c1, say “qj: c1:=c1+1;
goto qk”. Such an instruction is
encoded by the automaton dis-
played on Fig. 6 (where costs are

written in locations). We will require that the price between the date at which we
enter (or equivalently exit) qj and the date at which we enter qk is exactly 1. This
is enforced by checking the following path formula (with nested until modalities)
when entering qj :

ϕincr1 = qjU=0(¬qj ∧ (¬qkU=1qk))

This ensures that clock x has been divided by 2, i.e., that counter c1 has been
incremented. Decrementation can be handled in a similar way by setting the cost
of the second (resp. third) location to 2 (resp. 1) and enforcing global cost along
that module to be 2. Those operations easily adapt to counter c2.

Testing if counter c1 equals 0 reduces to checking that the value of clock x
is of the form 1/3c2, thus to multiplying clock x by 3 until it possibly equals 1.
Consider the following instruction: “qk: if (c1==0) goto ql”. We encode this
instruction with the automaton of Fig. 7.

Multiplying clock x by 3 is achieved by one pass through the loop with cost
exactly 3. Consider the following formula:

ϕmult = E
(
m⇒

(
mU=0z ∨mU=0(¬m ∧ ¬mU=3m)

))
Uz

It precisely expresses that it is possible to reach z after a finite number of passes
through the loop, each pass having total cost 3. This holds iff the original value

1
qk

1
ql

1

m

1
z

1 3 1
x=1

x:=0

Fig. 7. Testing a counter to 0
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of clock x when entering the module was of the form 1/3i, i.e., iff counter c1 was
equal to 0. Now, from qk, we simply have to ensure the following property:

ϕtest1 = qkU=0

(
¬qk ∧ E

(
¬mU=0(m ∧ ϕmult)

)
∧

(
¬qlU=0ql

))

Now, the global reduction consists in building a larger automaton, with one
state qj per instruction of the two-counter machine, and the intermediary states
required by the above modules. The following formula expresses that the halting
state can be reached after a finite number of executions of the instructions:

E
(∧

j

(qj → ϕtype(qj))
)
UqHalt

where type(qj) is the type of instruction qj (i.e., “incr1” if qj is an incremen-
tation of counter c1, “test1” is it is a test of counter c1, and so on). State q0
satisfies this property iff there exists a computation of the two-counter machine
that ends up in state qHalt. �

7 Conclusion

In this paper we have proved that the model-checking of one-clock priced timed
automata against WCTL properties is PSPACE-complete. This is rather sur-
prising as model-checking TCTL over one-clock timed automata has the same
complexity, though it allows much less features. For proving this result, we have
exhibited a sufficient granularity such that truth of formulas over regions defined
with this granularity is uniform. Based on this result, we developed a space-
efficient algorithm which computes satisfaction of subformulas on-the-fly. This
result has to be contrasted with the undecidability result of [5] which establishes
that model-checking priced timed automata with three clocks and more against
WCTL properties is undecidable.

There are several natural research directions: the decidability of WCTL model-
checking for two-clocks priced timed automata is not known, we just know that
these models have an infinite bisimulation [10]; another interesting extension is
multi-constrained modalities, e.g. EφUP1≤5,P2>3φ?
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Abstract. Desharnais, Gupta, Jagadeesan and Panangaden introduced
a family of behavioural pseudometrics for probabilistic transition sys-
tems. These pseudometrics are a quantitative analogue of probabilistic
bisimilarity. Distance zero captures probabilistic bisimilarity. Each pseu-
dometric has a discount factor, a real number in the interval (0, 1]. The
smaller the discount factor, the more the future is discounted. If the dis-
count factor is one, then the future is not discounted at all. Desharnais
et al. showed that the behavioural distances can be calculated up to any
desired degree of accuracy if the discount factor is smaller than one. In
this paper, we show that the distances can also be approximated if the
future is not discounted. A key ingredient of our algorithm is Tarski’s
decision procedure for the first order theory over real closed fields. By
exploiting the Kantorovich-Rubinstein duality theorem we can restrict
to the existential fragment for which more efficient decision procedures
exist.

1 Introduction

For systems that contain quantitative information, like, for example, probabili-
ties, time and costs, several behavioural pseudometrics (and closely related no-
tions) have been introduced (see, for example, [4,6,8,12,13,16,17,18,19,26,31]).
In this paper, we focus on probabilistic transition systems, which are a variant of
Markov chains. Desharnais, Gupta, Jagadeesan and Panangaden [16] introduced
a family of behavioural pseudometrics for these systems. These pseudometrics
assign a distance, a real number in the interval [0, 1], to each pair of states of the
probabilistic transition system. The distance captures the behavioural similarity
of the states. The smaller the distance, the more alike the states behave. The
distance is zero if and only if the states are probabilistic bisimilar, a behavioural
equivalence introduced by Larsen and Skou [24].

The pseudometrics of Desharnais et al. are defined via real-valued interpre-
tations of Larsen and Skou’s probabilistic modal logic. Formulae assume truth
values in the interval [0, 1]. Conjunction and disjunction are interpreted using
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the lattice structure of the unit interval. The modality 〈a〉 is interpreted arith-
metically by integration. The behavioural distance between states s1 and s2 is
then defined as the supremum over all formulae ϕ of the difference in the truth
value of ϕ in s1 and in s2.1

The definition of the behavioural pseudometrics of Desharnais et al. is para-
metrized by a discount factor δ, a real number in the interval (0, 1]. The smaller
the discount factor, the more (behavioural differences in) the future are dis-
counted. In the case that δ equals one, the future is not discounted. All differ-
ences in behaviour, whether in the near or far future, contribute alike to the
distance. For systems that (in principle) run forever, we may be interested in
all these differences and, hence, in the pseudometric that does not discount the
future.

In [14], Desharnais et al. presented an algorithm to approximate the be-
havioural distances for δ smaller than one. The first and third author [5] pre-
sented also an approximation algorithm for δ smaller than one.

There is a fundamental difference between pseudometrics that discount the
future and the one that does not. This is, for example, reflected by the fact
that all pseudometrics that discount the future give rise to the same topology,
whereas the pseudometric that does not discount the future gives rise to a dif-
ferent topology (see, for example, [16, page 350]). As a consequence, it may not
be surprising that neither approximation algorithm mentioned in the previous
paragraph can be modified in an obvious way to handle the case that δ equals
one.

The main contribution of this paper is an algorithm that approximates be-
havioural distances in case the discount factor δ equals one. Starting from the
logical definition of the pseudometric by Desharnais et al., we first give a charac-
terisation of the pseudometric as the greatest (post-)fixed point of a functional
on a complete lattice [0, 1]S , where S is the set of states of the probabilistic
transition system in question. This functional is closely related to the Kan-
torovich metric [22] on probability measures. Next, we dualize this characteriza-
tion exploiting the Kantorovich-Rubinstein duality theorem [23]. Subsequently,
we show, exploiting the dual characterization, that a pseudometric being a post-
fixed point can be expressed in the existential fragment of the first order theory
over real closed fields. Based on the fact that this first order theory is decidable, a
result due to Tarski [29], we show how to approximate the behavioural distances.
Finally, we discuss an implementation of our algorithm in Mathematica.

Exploiting the techniques put forward in this paper, we have also devel-
oped an algorithm to approximate the behavioural pseudometric that is pre-
sented in [3]. Due to lack of space, we cannot present this algorithm here. That
other algorithm and also the proofs of the results in this paper can be found
in [28].

1 More generally, de Alfaro [11] and McIver and Morgan [25] have given real-valued
interpretations to the modal mu-calculus following this pattern. Moreover, de Alfaro
has shown that the behavioural pseudometrics induced by mu-calculus formulae
agree with those of [16].
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2 Systems and Pseudometrics

Some basic notions that will play a role in the rest of this paper are presented
below. First we introduce the systems of interest: probabilistic transition systems.

Definition 1. A probabilistic transition system is a tuple 〈S, π〉 consisting of

– a finite set S of states and
– a function π : S × S → [0, 1] ∩Q satisfying

∑
s′∈S π(s, s′) ∈ {0, 1}.

We write s→ if
∑

s′∈S π(s, s′) = 1 and s �→ if
∑
s′∈S π(s, s′) = 0.

For states s and s′, π(s, s′) is the probability of making a transition to state s′

given that the system is in state s. Each state s either has no outgoing transi-
tions (s �→) or a transition is taken with probability 1 (s →). To simplify the
presentation, we do not consider the case that a state s may refuse to make a
transition with some probability, that is,

∑
s′∈S π(s, s′) ∈ (0, 1). However, all our

results can easily be generalized to handle that case as well (see [28]). We also
do not consider transitions that are labelled with actions. All our results can
also easily be modified to handle labelled transitions (see [28]). In the labelled
case, the definition of probabilistic transition system is a mild generalisation of
the notion of Markov chain.

In the rest of this paper, we will use the following probabilistic transition
system as our running example.

Example 1. We consider a probabilistic transition system with five states: s1, s2,
s3, s4 and s5. The following table contains the transition probabilities and, hence,
captures π. The probabilistic transition system be depicted as the following graph.

s1 s2 s3 s4 s5
s1 0 2

5
3
5 0 0

s2
7
10 0 0 1

5
1
10

s3 0 0 1 0 0
s4 0 0 0 0 0
s5 0 0 0 0 1

s1

2
5

��

3
5

��

s2
7
10

��

1
5

��

1
10

���
��

��
��

�

s31
��

s4 s5 1
��

We consider states of a probabilistic transition system behaviourally equivalent
if they are probabilistic bisimilar [24].

Definition 2. Let 〈S, π〉 be a probabilistic transition system. An equivalence
relation R on the set of states S is a probabilistic bisimulation if s1Rs2 implies∑

s∈E π(s1, s) =
∑
s∈E π(s2, s) for all R-equivalence classes E. States s1 and

s2 are probabilistic bisimilar, denoted s1 ∼ s2, if s1 R s2 for some probabilistic
bisimulation R.

Note that probabilistic bisimilar states s1 and s2 have the same probability of
transitioning to an equivalence class E of probabilistic bisimilar states.
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Example 2. Consider the probabilistic transition system of Example 1. The small-
est equivalence relation containing (s3, s5) is a probabilistic bisimulation. Hence,
the states s3 and s5 are probabilistic bisimilar.

The behavioural pseudometrics that we study in this paper yield pseudometric
spaces on the state space of probabilistic transition systems.

Definition 3. A 1-bounded pseudometric space is a pair (X, dX) consisting of
a set X and a distance function dX : X ×X → [0, 1] satisfying

1. for all x ∈ X, dX(x, x) = 0,
2. for all x, y ∈ X, dX(x, y) = dX(y, x), and
3. for all x, y, z ∈ X, dX(x, z) ≤ dX(x, y) + dX(y, z).

Instead of (X, dX) we often write X and we denote the distance function of a
metric space X by dX .

A (1-bounded) pseudometric space differs from a (1-bounded) metric space in
that different points may have distance zero in the former and not in the latter.
Since different states of a system may behave the same, such states will have
distance zero in our behavioural pseudometrics.

In the characterization of a behavioural pseudometric in Section 4 nonexpan-
sive functions play a key role.

Definition 4. Let X be a 1-bounded pseudometric space. A function f : X →
[0, 1] is nonexpansive if for all x1, x2 ∈ X,

|f(x1)− f(x2)| ≤ dX(x1, x2).

The set of nonexpansive functions from X to [0, 1] is denoted by X ------� [0, 1].

3 Behavioural Pseudometrics

Desharnais, Gupta, Jagadeesan and Panangaden [16] introduced a family of
behavioural pseudometrics for probabilistic transitions systems. Below, we will
briefly review the key ingredients of their definition.

To define their behavioural pseudometrics, Desharnais et al. defined a real-
valued semantics of a variant of Larsen and Skou’s probabilistic modal logic [24].
We describe this variant, adapted to the case of unlabelled transition systems,
in Definition 5.

Definition 5. The logic L is defined by

ϕ ::= true | ♦ϕ | ϕ ∧ ϕ | ¬ϕ | ϕ� q

where q ∈ [0, 1] ∩Q.
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The main difference between the above logic and the one of Larsen and Skou is
that we have ♦ϕ and ϕ� q whereas they combine the operators ♦ and �q into
one. Since they consider labelled transitions, they use the notation 〈a〉q for this
combined operator.

Desharnais et al. provided a family of real-valued interpretations of the logic.
That is, given a probabilistic transition system and a discount factor δ, the
interpretation gives a quantitative measure of the validity of a formula ϕ of the
logic in a state s of the system. The interpretation �ϕ�δ(s) is a real number in
the interval [0, 1]. It measures the validity of the formula ϕ in the state s. This
real number can roughly be thought of as the probability that ϕ is true in s.

Definition 6. Given a probabilistic transition system 〈S, π〉 and a discount fac-
tor δ ∈ (0, 1], for each ϕ ∈ L, the function �ϕ�δ : S → [0, 1] is defined by

�true�δ(s) = 1
�♦ϕ�δ(s) = δ

∑
s′∈S π(s, s′)�ϕ�δ(s′)

�ϕ ∧ ψ�δ(s) = min{�ϕ�δ(s), �ψ�δ(s)}
�¬ϕ�δ(s) = 1− �ϕ�δ(s)

�ϕ� q�δ(s) = max{�ϕ�δ(s)− q, 0}

Example 3. Consider the probabilistic transition system of Example 1. For this
system, �♦true�δ(s3) = δ and �♦true�δ(s4) = 0.

Given a discount factor δ ∈ (0, 1], the behavioural pseudometric dδ assigns a dis-
tance, a real number in the interval [0, 1], to every pair of states of a probabilistic
transition system. The distance is defined in terms of the logical formulae and
their interpretation. Roughly speaking, the distance is captured by the logical
formula that distinguishes the states the most.

Definition 7. Given a probabilistic transition system 〈S, π〉 and a discount fac-
tor δ ∈ (0, 1], the distance function dδ : S × S → [0, 1] is defined by

dδ(s1, s2) = sup
ϕ∈L

�ϕ�δ(s1)− �ϕ�δ(s2).

Example 4. Consider the probabilistic transition system of Example 1. For ex-
ample, the states s3 and s4 are δ apart. This distance is witnessed by the formula
♦true. The distances2 are collected in the following table. Since a distance func-
tion is symmetric and the distance from a state to itself is zero, we do not give
all the entries.

s1 s2 s3 s4

s2
25δ2−2δ4

125−25δ−35δ2+7δ3

s3
2δ3

25−7δ2
5δ2

25−7δ2

s4 δ δ δ

s5
2δ3

25−7δ2
5δ2

25−7δ2 0 δ

2 These distances were obtained “by hand” and checked for numerous different dis-
count factors using the algorithm described in [5].
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Proposition 1 ([16, Theorem 5.2]). dδ is a 1-bounded pseudometric space.

Each behavioural pseudometric dδ is a quantitative analogue of probabilistic
bisimilarity. This behavioural equivalence is exactly captured by those states
that have distance zero.

Proposition 2 ([16, Theorem 4.10]). Given a probabilistic transition system
〈S, π〉 and a discount factor δ ∈ (0, 1], for all s1, s2 ∈ S,

dδ(s1, s2) = 0 if and only if s1 ∼ s2.

In [14], Desharnais et al. present a decision procedure for the behavioural pseu-
dometric dδ when δ is smaller than one. Let us briefly sketch their algorithm.
They define the depth of a logical formula as follows.

depth(true) = 0
depth(♦ϕ) = depth(ϕ) + 1

depth(ϕ ∧ ψ) = max{depth(ϕ), depth(ψ)}
depth(¬ϕ) = depth(ϕ)

depth(ϕ� q) = depth(ϕ)

One can easily verify that �ϕ�δ(s1) − �ϕ�δ(s2) ≤ δdepth(ϕ) for each ϕ ∈ L.
This suggests that one can compute dδ to any desired degree of accuracy by
restricting attention to formulae ϕ of a fixed modal depth. Clearly, there exist
infinitely many formulae of each fixed modal depth. Nevertheless Desharnais et
al. show how to construct a finite subset Fn of the logical formulae of at most
depth n such that

dδ(s1, s2)− sup
ϕ∈Fn

�ϕ�δ(s1)− �ϕ�δ(s2) ≤ δn.

In this way, dδ(s1, s2) can be approximated up to arbitrary accuracy provided δ
is smaller than one.

4 A Fixed Point Characterization and Its Dual

For the rest of this paper, we focus on the behavioural pseudometric that does
not discount the future. That is, we concentrate on the pseudometric d1. Below,
we present an alternative characterization of this pseudometric. In particular, we
characterize d1 as the greatest (post-)fixed point of a function from a complete
lattice to itself. This characterization can be viewed as a quantitative analogue
of the greatest fixed point characterization of bisimilarity [27].

We also dualize the definition of Δ exploiting the Kantorovich-Rubinstein
duality theorem [23]. As we will see in Section 5, this dual characterization will
allow us to define Δ as the solution to a minimization problem rather than a
maximization problem, as above. In turn this will allow us to capture the fact
that a pseudometric is a post-fixed point of Δ in the existential fragment of the
first order theory over real closed fields.

For the rest of this paper, we fix a probabilistic transition system 〈S, π〉. We
endow the set of pseudometrics on S with the following order.
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Definition 8. The relation � on 1-bounded pseudometrics on S is defined by

d1 � d2 if d1(s1, s2) ≥ d2(s1, s2) for all s1, s2 ∈ S.

Note the reverse direction of � and ≥ in the above definition. We decided to
make this reversal so that d1 is a greatest fixed point, in analogy with the
characterization of bisimilarity, rather than a least fixed point. This choice has
no impact on any results in this paper.

Proposition 3 ([15, Lemma 3.2]). The set of 1-bounded pseudometrics on S
endowed with the order � forms a complete lattice.

Next, we introduce a function from this complete lattice to itself of which the
behavioural pseudometric d1 is the greatest fixed point.

Definition 9. Let d be a 1-bounded pseudometric on S. The distance function
Δ(d) : S × S → [0, 1] is defined by

Δ(d)(s1, s2) = max

{
∑

s∈S
f(s)(π(s1, s)− π(s2, s))

∣
∣
∣
∣ f ∈ (S, d) ------� [0, 1]

}

if s1 → and s2 →, and Δ(d)(s1, s2) =
{

0 if s1 �→ and s2 �→
1 otherwise.

The functional Δ is closely related to the Kantorovich metric [22] on probability
measures. In the definition of that metric, nonexpansive functions play a key role.3

Since Δ(d) is a 1-bounded pseudometric on S and Δ is order-preserving, we
can conclude from Tarski’s fixed point theorem [30, Theorem 1] that Δ has a
greatest fixed point. We denote the greatest fixed point of Δ by gfp(Δ). This
greatest fixed point of Δ is also the greatest post-fixed point of Δ (see, for
example, [10, Theorem 4.11]4).

Theorem 1. d1 = gfp(Δ).

The greatest fixed point of an order-preserving function on a complete lattice
can be obtained by iteration (see, for example, [10, Exercise 4.13]).

Definition 10. For each ordinal α, the 1-bounded pseudometric dα on S is
defined by

d0 = �
dα+1 = Δ(dα)
dβ =

�

α∈β
dα if β is a limit ordinal

3 The Kantorovich metric is the smallest distance function on probability measures for
which integration of nonexpansive functions is nonexpansive.

4 d is a post-fixed point of Δ if d � Δ(d). In [10, page 94], such a d is called a pre-
fixpoint.
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For Δ, we need to iterate (at most) ω times before reaching the greatest fixed
point. For the system of Example 1 we need ω iterations.

Proposition 4. gfp(Δ) = dω.

Let us recall (a minor variation of) the Kantorovich-Rubinstein duality theorem.
Let X be a 1-bounded compact pseudometric space. Let μ1 and μ2 be Borel
probability measures on X . We denote the set of Borel probability measures
on the product space with marginals μ1 and μ2, that is, the Borel probability
measures μ on X2 such that for all Borel subsets B of X ,

μ(B ×X) = μ1(B) and μ(X ×B) = μ2(B),

by μ1 ⊗ μ2. The Kantorovich-Rubinstein duality theorem tells us

max
{∫

X

fdμ1 −
∫

X

fdμ2

∣
∣
∣
∣ f ∈ X ------� [0, 1]

}

= min
{∫

X2
dXdμ

∣
∣
∣
∣μ ∈ μ1 ⊗ μ2

}

.

The following proposition, which is a consequence of the Kantorovich-
Rubinstein duality theorem, defines Δ(d) as a minimum as opposed to the maxi-
mum in Definition 9.

Proposition 5. Let d be a 1-bounded pseudometric on S. Let s1, s2 ∈ S such
that s1 → and s2 →. Then

Δ(d)(s1, s2) = min

⎧
⎨

⎩

∑

(si,sj)∈S2

d(si, sj)μ(si, sj)
∣
∣
∣
∣μ ∈ π(s1, ·)⊗ π(s2, ·)

⎫
⎬

⎭

where μ ∈ π(s1, ·)⊗ π(s2, ·) if

∀sj ∈ S
∑

si∈S
μ(si, sj) = π(s1, sj) ∧ ∀si ∈ S

∑

sj∈S
μ(si, sj) = π(s2, si).

5 The Algorithm

Before we present our algorithm, we first show that the fact that a pseudometric
is a post-fixed point of Δ can be expressed in (the existential fragment of) the
first order theory over real closed fields. This will allow us to exploit Tarski’s
decision procedure to approximate the behavioural pseudometric.

For the rest of this paper, we assume that the probabilistic transition system
〈S, π〉 has N states s1, s2, . . . , sN . Instead of π(si, sj) we will write πij . We
represent a 1-bounded pseudometric on the set S of states of the probabilistic
transition system, as (the values of) a collection of real valued variables dij .

The fact that d is a 1-bounded pseudometric can now be captured as follows.

Definition 11. The predicate pseudo(d) is defined by

pseudo(d) ≡
∧

1≤i,j≤N
dij ≥ 0 ∧ dij ≤ 1 ∧

∧

1≤i≤N
dii = 0 ∧

∧

1≤i,j≤N
dij = dji ∧

∧

1≤h,i,j≤N
dhj ≤ dhi + dij
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Furthermore, the fact that d is a post-fixed point of Δ can be captured as follows.

Definition 12. The predicate post-fixed(d) is defined by

post-fixed(d)

≡
∧

1≤i0,j0≤N
post-fixed1(d, i0, j0) ∨ post-fixed2(d, i0, j0) ∨ post-fixed3(d, i0, j0)

where

post-fixed1(d, i0, j0) ≡
∑

1≤i≤N
πi0i > 0 ∧

∑

1≤j≤N
πj0j > 0 ∧

∃(μij)1≤i,j≤N
∧

1≤i,j≤N
μij ≥ 0 ∧ μij ≤ 1

∧

1≤j≤N

∑

1≤i≤N
μij = πi0j ∧

∧

1≤i≤N

∑

1≤j≤N
μij = πj0i ∧

∑

1≤i,j≤N
dijμij ≤ di0j0

post-fixed2(d, i0, j0) ≡
∑

1≤i≤N
πi0i = 0 ∧

∑

1≤j≤N
πj0j = 0 ∧ 0 ≤ di0j0

post-fixed3(d, i0, j0) ≡

⎛

⎝

⎛

⎝
∑

1≤i≤N
πi0i > 0 ∧

∑

1≤j≤N
πj0j = 0

⎞

⎠∨

⎛

⎝
∑

1≤i≤N
πi0i = 0 ∧

∑

1≤j≤N
πj0j > 0

⎞

⎠

⎞

⎠ ∧

1 ≤ di0j0

Now we are ready to present our algorithm. Consider the states si0 and sj0 . We
restrict our attention to the case that si0 → and sj0 →. In the other cases the
computation of the distance is trivial.

In our algorithm, we use the algorithm tarski that takes as input a sentence
of the first order theory of real closed fields and decides the truth or falsity of
the given sentence. The fact that there exists such an algorithm was first proved
by Tarski [29].

Let ε be the desired accuracy. That is, we want to find an interval [�0, u0] ⊆
[0, 1] such that u0−�0 ≤ ε and d1(si0 , sj0) ∈ [�0, u0]. The algorithm approximate
takes as input an interval [�, u] ⊆ [0, 1] such that d1(si0 , sj0) ∈ [�, u] and returns
the desired result. As a consequence, approximate(0, 1) returns an approxima-
tion of d1(si0 , sj0) with accuracy ε.
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approximate(�, u):
if u− � ≤ ε

return [�, u]
else

m = �+u
2

if tarski(∃dpseudo(d) ∧ post-fixed(d) ∧ di0j0 ≤ m)
return approximate(�, m)

else
return approximate(m, u)

Note that the argument of tarski is a sentence that is part of the existen-
tial fragment of the first order theory over real closed fields. For this fragment
there are more efficient decision procedures than for the general theory (see, for
example, [2]).

Let us sketch a correctness proof of our algorithm. Assume that d1(si0 , sj0) ∈
[�, u]. We distinguish the following three cases.

– If u− � ≤ ε, then the algorithm obviously returns the desired result.
– Assume that u−�>ε and suppose that tarski returns true. Then there exists

a 1-bounded pseudometric d that is a post-fixed point of Δ and d(si0 , sj0) ≤
m. Since d1 is the greatest post-fixed point of Δ, we have that d � d1. Hence,
d1(si0 , sj0) ≤ d(si0 , sj0) ≤ m. Therefore, d1(si0 , sj0) ∈ [�,m].

– Assume that u−�>ε and suppose that tarski returns false. Then d(si0 , sj0)>
m for every 1-bounded pseudometric d that is a post-fixed point of Δ.
Since d1 is a post-fixed point of Δ, we have that d1(si0 , sj0) > m. There-
fore, d1(si0 , sj0) ∈ [m,u].

Obviously, the algorithm terminates.

6 An Implementation in Mathematica

A decision procedure for the first order theory of real closed fields based on
quantifier elimination was first given by Tarski [29]. A number of algorithms
have been developed thereafter for the theory (see, for example, [2,9,21]). Collin’s
algorithm is implemented in the tool Mathematica and can be used for solving
our formulae. However, it works for very small examples and therefore it is
essential to simplify the formula and reduce its size to make it solvable. To
simplify the formula, we first compute some of the distances using the following
results.

Proposition 6

– If s1 �→ and s2 �→ then d1(s1, s2) = 0.
– If s1 �→ and s2 →, or s1 → and s2 �→ then d1(s1, s2) = 1.
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Example 5. Consider the probabilistic transition system of Example 1. State s4
has distance one to all other states.

Next, we present a simple characterization of the distance between a state that
never terminates (that is, the probability of reaching a state with no outgoing
transitions is zero) and another state.

Given a state s and n ∈ ω + 1, τn(s) is the probability of terminating in less
than n transitions when started in s.

Definition 13. For each n ∈ ω + 1, the function τn : S → [0, 1] is defined by

τ0(s) = 0

τn+1(s) =
{

1 if s �→∑
s′∈S π(s, s′)τn(s′) otherwise

τω(s) = supn∈ω τn(s)

Example 6. Consider the probabilistic transition system of Example 1. Then we
have that τω(s1) = 1

9 , τω(s2) = 5
18 , τω(s3) = 0, τω(s4) = 1 and τω(s5) = 0.

Obviously, for a state s without outgoing transitions, we have that τω(s) = 1. For
a state s that cannot reach any state without outgoing transitions, we have that
τω(s) = 0. For the remaining states, we can compute the probability of termina-
tion using standard techniques as described in, for example, [20, Section 11.2].

Proposition 7. If τω(s2) = 0 then d1(s1, s2) = τω(s1).

Example 7. Consider the probabilistic transition system of Example 1. From
Proposition 7 we can conclude that d1(s1, s3) = 1

9 , d1(s2, s3) = 5
18 , d1(s4, s3) = 1

and d1(s5, s3) = 0.

Given a probabilistic bisimulationR, we can quotient the probabilistic transition
system 〈S, π〉 as follows.

Definition 14. Let R be a probabilistic bisimulation. The probabilistic transi-
tion system 〈SR, πR〉 consists of

– the set SR = { [s] | s ∈ S } of R-equivalence classes and
– the function πR : SR × SR → [0, 1] defined by

πR([s], [s′]) =
∑

s′′Rs′
π(s, s′′).

Note that the function πR is well-defined since R is a probabilistic bisimula-
tion. We will apply the above quotient construction for probabilistic bisimilarity
(which can be computed in polynomial time [1]).

Example 8. Consider the probabilistic transition system of Example 1. The small-
est equivalence relation containing {〈s3, s5〉} is a probabilistic bisimulation. The
resulting quotient can be depicted as
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[s1]

2
5

��

3
5

��

[s2]
7
10

		

1
5

��1
10



��
��

��
��

[s3]1
��

[s4]

By quotienting, the number of states that need to be considered and, hence,
the number of variables in the formula may be reduced. However, we still have
to check that the quotiented system gives rise to the same distances. Next we
relate the behavioural pseudometric d1 of the original system 〈S, π〉 with the
behavioural pseudometric dR of the quotiented system 〈SR, πR〉.

Proposition 8. For all s1, s2 ∈ S, dR([s1], [s2]) = d1(s1, s2).

To simplify the formula even further, we exploit the following three observations.

– Since d is a pseudometric, d1(si, si) = 0 and d1(si, sj) = d1(sj , si). Therefore,
in pseudo(d) ∧ post-fixed(d) we can replace all dii’s with zero and all dij ’s
where i> j with dji’s. As a consequence, we only need to consider dij ’s with
i < j. This reduces the number of variables in the formula considerably.

– Let C be the set of pairs of states for which the distances have already been
computed. Then

∃dpseudo(d) ∧ post-fixed(d) ∧ di0j0 ≤ m

is equivalent to

∃dpseudo(d) ∧ post-fixed(d) ∧ di0j0 ≤ m ∧
∧

(i,j)∈C
dij = d1(si, sj)

since d1 is the greatest post-fixed point. As a consequence, we can replace
all dij ’s where (i, j) ∈ C with their already computed distances d1(si, sj).
Again, the number of variables may be reduced.

– If πi0j = 0, we can infer that μij = 0 for all 1 ≤ i ≤ N . As a consequence,
we can replace the occurrences of all those μij ’s with 0. Symmetrically, if
πj0i = 0 we can simplify the formula similarly. Also this simplification may
reduce the number of variables.

We have implemented these simplifications in the form of a Java program
that takes as input the probability matrix π and that produces as output the
simplified formula in a format that can be fed to Mathematica.5

Example 9. Consider the probabilistic transition system of Example 1. The sim-
plified formula for this system is given below.

5 The code and documentation is available at the URL
www.cse.yorku.ca/~franck/research/pm2m
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1 Reduce[

2 Exists[d12,

3 (0 <= d12 <= 1) && (0.11112 <= d12 + 0.27778) && (d12 <= 0.38889) &&

4 Exists[{u12,u13,u32,u42,u43,u33},

5 (0 <= u12 <= 1) && (0 <= u13 <= 1) && (0 <= u32 <= 1) &&

6 (0 <= u42 <= 1) && (0 <= u43 <= 1) &&

7 (u12 + u32 + u42 == 0.4) && (u13 + u43 + u33 == 0.6) &&

8 (u12 + u13 == 0.7) && (u32 + u33 == 0.1) && (u42 + u43 == 0.2) &&

9 (d12 * u12 + 0.11112 * u13 + 0.27778 * u32 + u42 + u43 <= d12)] &&

10 Exists[{u21,u23,u24,u31,u33, u34},

11 (0 <= u21 <= 1) && (0 <= u23 <= 1) && (0 <= u24 <= 1) &&

12 (0 <= u31 <= 1) && (0 <= u34 <= 1) &&

13 (u21 + u31 == 0.7) && (u23 + u33 == 0.1) && (u24 + u34 == 0.2) &&

14 (u21 + u23 + u24 == 0.4) && (u31 + u33 + u34 == 0.6) &&

15 (d12 * u21 + 0.27778 * u23 + u24 + 0.11112 * u31 + u34 <= d12)] &&

16 (0 <= d12 <= 0.5)]]

Line 3 correspond to pseudo(d), line 4–9 correspond to post-fixed1(d, 1, 2) and
line 10–15 correspond to post-fixed1(d, 2, 1). The formula was reduced to true by
Mathematica in 8.2 seconds on a 3GHz machine with 1GB RAM. When feeding
Mathematica the formula that has not been simplified, it runs out of memory
after some time.

We also attempted to solve this example with a solver called QEPCAD B [7]
but the performance of Mathematica on this example was better.

7 Conclusion

This paper combines a number of ingredients, known already for a long time, in-
cluding the Kantorovich-Rubinstein duality theorem of the fifties, Tarski’s fixed
point theorem of the fourties and Tarski’s decision procedure for the first order
theory of real closed fields of the thirties. We show that the behavioural pseudo-
metric d1, which does not discounts the future, can be approximated up to an
arbitrary accuracy. While the combination of the above results into a decision
procedure for the pseudometric is not technically difficult, we do solve a prob-
lem that has been open since 1999. Most of the results in Section 3 and 4 are
(variations on) known results. As far as we know, the results in Section 5 and 6
are new. The techniques exploited in this paper have also been used to approx-
imate other behavioural pseudometrics that do not discount the future like, for
example, the one presented in [3]. Furthermore, our algorithm can easily be ad-
justed to the discounted case. As future work, we plan to apply our techniques
to obtain approximation algorithms for other behavioural pseudometrics like,
for example, the one for systems that combine nondeterminism and probability
presented in [13]. Since the satisfiability problem for the existential fragment of
the first order theory of the real closed fields is PSPACE, it is not surprising that
our algorithm can only handle small examples as we have shown in Section 6.
As a consequence, the quest for practical algorithms to approximate d1 is still
open. Since the closure ordinal of Δ is ω, as proved in Proposition 4, an iterative
algorithm might be feasible.
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Abstract. The theory of graph games with ω-regular winning condi-
tions is the foundation for modeling and synthesizing reactive processes.
In the case of stochastic reactive processes, the corresponding stochas-
tic graph games have three players, two of them (System and Envi-
ronment) behaving adversarially, and the third (Uncertainty) behaving
probabilistically. We consider two problems for stochastic graph games:
the qualitative problem asks for the set of states from which a player
can win with probability 1 (almost-sure winning); and the quantitative
problem asks for the maximal probability of winning (optimal winning)
from each state. We consider ω-regular winning conditions formalized as
Müller winning conditions. We present optimal memory bounds for pure
almost-sure winning and optimal winning strategies in stochastic graph
games with Müller winning conditions. We also present improved mem-
ory bounds for randomized almost-sure winning and optimal strategies.

1 Introduction

A stochastic graph game [6] is played on a directed graph with three kinds of states:
player-1, player-2, and probabilistic states. At player-1 states, player 1 chooses a
successor state; at player-2 states, player 2 chooses a successor state; and at prob-
abilistic states, a successor state is chosen according to a given probability dis-
tribution. The result of playing the game forever is an infinite path through the
graph. If there are no probabilistic states, we refer to the game as a 2-player graph
game; otherwise, as a 21/2-player graph game. There has been a long history of us-
ing 2-player graph games for modeling and synthesizing reactive processes [1,16]:
a reactive system and its environment represent the two players, whose states and
transitions are specified by the states and edges of a game graph. Consequently,
21/2-player graph games provide the theoretical foundation for modeling and syn-
thesizing processes that are both reactive and stochastic.

For the modeling and synthesis (or “control”) of reactive processes, one tra-
ditionally considers ω-regular winning conditions, which naturally express the
temporal specifications and fairness assumptions of transition systems [12]. This
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paper focuses on 21/2-player graph games with respect to an important normal
form of ω-regular winning conditions; namely Müller winning conditions [17].

In the case of 2-player graph games, where no randomization is involved, a
fundamental determinacy result of Gurevich and Harrington [10] based on LAR
(latest appearance record) construction ensures that, given an ω-regular winning
condition, at each state, either player 1 has a strategy to ensure that the con-
dition holds, or player 2 has a strategy to ensure that the condition does not
hold. Thus, the problem of solving 2-player graph games consists in finding the
set of winning states, from which player 1 can ensure that the condition holds.
Along with the computation of the winning states, the characterization of com-
plexity of winning strategies is a central question, since the winning strategies
represent the implementation of the controller in the synthesis problem. The
elegant algorithm of Zielonka [18] uses the LAR construction to compute win-
ning sets in 2-player graph games with Müller conditions. In [7] the authors
present an insightful analysis of Zielonka’s algorithm to present optimal memory
bounds (matching upper and lower bound) for winning strategies in 2-player
graph games with Müller conditions.

In the case of 21/2-player graph games, where randomization is present in the
transition structure, the notion of winning needs to be clarified. Player 1 is said
to win surely if she has a strategy that guarantees to achieve the winning condi-
tion against all player-2 strategies. While this is the classical notion of winning
in the 2-player case, it is less meaningful in the presence of probabilistic states,
because it makes all probabilistic choices adversarial (it treats them analogously
to player-2 choices). To adequately treat probabilistic choice, we consider the
probability with which player 1 can ensure that the winning condition is met.
We thus define two solution problems for 21/2-player graph games: the qualitative
problem asks for the set of states from which player 1 can ensure winning with
probability 1; the quantitative problem asks for the maximal probability with
which player 1 can ensure winning from each state (this probability is called the
value of the game at a state). Correspondingly, we define almost-sure winning
strategies, which enable player 1 to win with probability 1 whenever possible,
and optimal strategies, which enable player 1 to win with maximal probability.
The main result of this paper is an optimal memory bound for pure (determin-
istic) almost-sure and optimal strategies in 21/2-player graph games with Müller
conditions. In fact we generalize the elegant analysis of [7] to present an upper
bound for optimal strategies for 21/2-player graph games with Müller conditions
that matches the lower bound for sure winning in 2-player games. As a conse-
quence we generalize several results known for 21/2-player graph games: such as
existence of pure memoryless optimal strategies for parity conditions [5,19,14]
and Rabin conditions [4]. We present the result for almost-sure strategies in Sec-
tion 3; and then generalize it to optimal strategies in Section 4. We also study the
memory bounds for randomized strategies. In case of randomized strategies we
improve the upper bound for almost-sure and optimal strategies as compared to
pure strategies (Section 5). The problem of a matching upper and lower bound
for almost-sure and optimal randomized strategies remains open.
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2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based
probabilistic games (21/2-player games), two-player turn-based deterministic
games (2-player games), and Markov decision processes (11/2-player games).

Notation. For a finite set A, a probability distribution on A is a function δ : A→
[0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on

A by D(A). Given a distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A |
δ(x) > 0} the support of δ.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S,E), (S1, S2, S©), δ) consists of a directed graph (S,E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S,E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors.

A set U ⊆ S of states is called δ-closed if for every probabilistic state
u ∈ U ∩ S©, if (u, t) ∈ E, then t ∈ U . The set U is called δ-live if for ev-
ery nonprobabilistic state s ∈ U ∩ (S1 ∪ S2), there is a state t ∈ U such that
(s, t) ∈ E. A δ-closed and δ-live subset U of S induces a subgame graph of G,
indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the spe-
cial case of the 21/2-player game graphs with S© = ∅. The Markov decision
processes (11/2-player game graphs) are the special case of the 21/2-player game
graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1
MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.

Plays and strategies. An infinite path, or play, of the game graph G is an
infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write
Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗·S1 → D(S) that assigns a probability
distribution to all finite sequences w ∈ S∗ ·S1 of states ending in a player-1 state
(the sequence represents a prefix of a play). Player 1 follows the strategy σ if in
each player-1 move, given that the current history of the game is w ∈ S∗ ·S1, she
chooses the next state according to the probability distribution σ(w). A strategy
must prescribe only available moves, i.e., for all w ∈ S∗, and s ∈ S1 we have
Supp(σ(w · s)) ⊆ E(s). The strategies for player 2 are defined analogously. We
denote by Σ and Π the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,πs for which
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the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given strategies
σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,πs (A) for the
probability that a path belongs to A if the game starts from the state s and
the players follow the strategies σ and π, respectively. In the context of player-1
MDPs we often omit the argument π, because Π is a singleton set.

We classify strategies according to their use of randomization and memory.
The strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
σ(w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies for player 1. A
strategy that is not necessarily pure is called randomized. Let M be a set called
memory, that is, M is a set of memory elements. A player-1 strategy σ can be
described as a pair of functions σ = (σu, σm): a memory-update function σu:
S×M→ M and a next-move function σm: S1×M→ D(S). We can think of strate-
gies with memory as input/output automaton computing the strategies (see [7]
for details). The strategy (σu, σm) is finite-memory if the memory M is finite, and
then we denote the size of the memory of the strategy σ by the size of its mem-
ory M, i.e., |M|. We denote by ΣF the set of finite-memory strategies for player 1,
and by ΣPF the set of pure finite-memory strategies; that is, ΣPF = ΣP ∩ΣF .
The strategy (σu, σm) is memoryless if |M| = 1; that is, the next move does not
depend on the history of the play but only on the current state. A memory-
less player-1 strategy can be represented as a function σ: S1 → D(S). A pure
memoryless strategy is a pure strategy that is memoryless. A pure memoryless
strategy for player 1 can be represented as a function σ: S1 → S. We denote by
ΣM the set of memoryless strategies for player 1, and by ΣPM the set of pure
memoryless strategies; that is, ΣPM = ΣP ∩ ΣM . Analogously we define the
corresponding strategy families ΠP , ΠF , ΠPF , ΠM , and ΠPM for player 2.

Given a finite-memory strategy σ ∈ ΣF , let Gσ be the game graph obtained
from G under the constraint that player 1 follows the strategy σ. The corre-
sponding definition Gπ for a player-2 strategy π ∈ ΠF is analogous, and we
write Gσ,π for the game graph obtained from G if both players follow the finite-
memory strategies σ and π, respectively. Observe that given a 21/2-player game
graph G and a finite-memory player-1 strategy σ, the result Gσ is a player-2
MDP. Similarly, for a player-1 MDP G and a finite-memory player-1 strategy σ,
the result Gσ is a Markov chain. Hence, if G is a 21/2-player game graph and the
two players follow finite-memory strategies σ and π, the result Gσ,π is a Markov
chain. These observations will be useful in the analysis of 21/2-player games.

Objectives. An objective for a player consists of an ω-regular set of winning
plays Φ ⊆ Ω [17]. In this paper we study zero-sum games, where the objectives
of the two players are complementary; that is, if the objective of one player
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is Φ, then the objective of the other player is Φ = Ω \ Φ. We consider ω-regular
objectives specified as Müller objectives. For a play ω = 〈s0, s1, s2, . . .〉, let Inf(ω)
be the set { s ∈ S | s = sk for infinitely many k ≥ 0 } of states that appear
infinitely often in ω. We use colors to define objectives as in [7]. A 21/2-player
game (G,C, χ,F ⊆ P(C)) consists of a 21/2-player game graph G, a finite set C
of colors, a partial function χ : S ⇀ C that assigns colors to some states, and a
winning condition specified by a subset F of the power set P(C) of colors. The
winning condition defines subset Φ ⊆ Ω of winning plays, defined as follows:
Müller(F) = { ω ∈ Ω | χ(Inf(ω)) ∈ F }, that is the set of paths ω such that the
colors appearing infinitely often in ω is in F .
Remarks. A winning condition F ⊆ P(C) has a split if there are sets C1, C2 ∈ F
such that C1 ∪ C2 �∈ F . A winning condition is a Rabin winning condition if
it do not have splits, and it is a Streett winning condition if P(C) \ F does
not have a split. This notions coincide with the Rabin and Streett winning
conditions usually defined in the literature (see [15,7] for details). We now define
the reachability, safety, Büchi and coBüchi objectives that will be useful in proofs.

– Reachability and safety objectives. Given a set T ⊆ S of “target” states,
the reachability objective requires that some state of T be visited. The set
of winning plays is thus Reach(T ) = { ω = 〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈
T for some k ≥ 0 }. Given a set F ⊆ S, the safety objective requires that
only states of F be visited. Thus, the set of winning plays is Safe(F ) = {ω =
〈s0, s1, s2, . . .〉 ∈ Ω | sk ∈ F for all k ≥ 0 }.

– Büchi and coBüchi objectives. Given a set B ⊆ S of “Büchi” states, the
Büchi objective requires that B is visited infinitely often. Formally, the set
of winning plays is Büchi(B) = { ω ∈ Ω | Inf(ω) ∩ B �= ∅ }. Given C ⊆ S,
the coBüchi objective requires that all states visited infinitely often are in C.
Formally, the set of winning plays is coBüchi(C) = { ω ∈ Ω | Inf(ω) ⊆ C }.

Sure, almost-sure, positive winning and optimality. Given a player-1 ob-
jective Φ, a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈ S if
for every strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ. A strat-
egy σ is almost-sure winning for player 1 from the state s for the objective Φ
if for every player-2 strategy π, we have Prσ,πs (Φ) = 1. A strategy σ is positive
winning for player 1 from the state s for the objective Φ if for every player-2
strategy π, we have Prσ,πs (Φ) > 0. The sure, almost-sure and positive winning
strategies for player 2 are defined analogously. Given an objective Φ, the sure
winning set 〈〈1〉〉sure(Φ) for player 1 is the set of states from which player 1
has a sure winning strategy. Similarly, the almost-sure winning set 〈〈1〉〉almost (Φ)
and the positive winning set 〈〈1〉〉pos (Φ) for player 1 is the set of states from
which player 1 has an almost-sure winning and a positive winning strategy, re-
spectively. The sure winning set 〈〈2〉〉sure(Ω \ Φ), the almost-sure winning set
〈〈2〉〉almost (Ω \ Φ) and the positive winning set 〈〈2〉〉pos(Ω \ Φ) for player 2 are
defined analogously. It follows from the definitions that for all 21/2-player game
graphs and all objectives Φ, we have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ) ⊆ 〈〈1〉〉pos (Φ).
Computing sure, almost-sure and positive winning sets and strategies is referred
to as the qualitative analysis of 21/2-player games [8].
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Given ω-regular objectives Φ ⊆ Ω for player 1 and Ω\Φ for player 2, we define
the value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as
the following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,πs (Φ) and 〈〈2〉〉val (Ω \Φ)(s) =
supπ∈Π infσ∈Σ Prσ,πs (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,πs (Φ). The optimal strategies for player 2 are
defined analogously. Computing values and optimal strategies is referred to as
the quantitative analysis of 21/2-player games. The set of states with value 1 is
called the limit-sure winning set [8]. For 21/2-player game graphs with ω-regular
objectives the almost-sure and limit-sure winning sets coincide [4].

Let C ∈ {P,M,F,PM ,PF} and consider the family ΣC ⊆ Σ of special strate-
gies for player 1. We say that the family ΣC suffices with respect to a player-1
objective Φ on a class G of game graphs for sure winning if for every game graph
G ∈ G and state s ∈ 〈〈1〉〉sure(Φ), there is a player-1 strategy σ ∈ ΣC such that
for every player-2 strategy π ∈ Π , we have Outcome(s, σ, π) ⊆ Φ. Similarly,
the family ΣC suffices with respect to the objective Φ on the class G of game
graphs for (a) almost-sure winning if for every game graph G ∈ G and state
s ∈ 〈〈1〉〉almost (Φ), there is a player-1 strategy σ ∈ ΣC such that for every player-
2 strategy π ∈ Π , we have Prσ,πs (Φ) = 1; (b) positive winning if for every game
graph G ∈ G and state s ∈ 〈〈1〉〉pos (Φ), there is a player-1 strategy σ ∈ ΣC such
that for every player-2 strategy π ∈ Π , we have Prσ,πs (Φ) > 0; and (c) optimality
if for every game graph G ∈ G and state s ∈ S, there is a player-1 strategy
σ ∈ ΣC such that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,πs (Φ). The notion of sufficiency for
size of finite-memory strategies is obtained by referring to the size of the memory
M of the strategies. The notions of sufficiency of strategies for player 2 is defined
analogously.
Determinacy. For sure winning, the 11/2-player and 21/2-player games coin-
cide with 2-player (deterministic) games where the random player (who chooses
the successor at the probabilistic states) is interpreted as an adversary, i.e., as
player 2. Theorem 1 and Theorem 2 state the classical determinacy results for
2-player and 21/2-player game graphs with Müller objectives. It follows from
Theorem 2 that for all Müller objectives Φ, for all ε > 0, there exists an ε-
optimal strategy σε for player 1 such that for all π and all s ∈ S we have
Prσ,πs (Φ) ≥ 〈〈1〉〉val (Φ)(s) − ε.
Theorem 1 (Qualitative determinacy [10]). For all 2-player game graphs
and Müller objectives Φ, we have 〈〈1〉〉sure(Φ) ∩ 〈〈2〉〉sure(Ω \ Φ) = ∅ and
〈〈1〉〉sure(Φ)∪〈〈2〉〉sure (Ω \Φ) = S. Moreover, on 2-player game graphs, the family
of pure finite-memory strategies suffices for sure winning with respect to Müller
objectives.

Theorem 2 (Quantitative determinacy [13]). For all 21/2-player game
graphs, for all Müller winning conditions F ⊆ P(C), and all states s, we have
〈〈1〉〉val (Müller(F))(s) + 〈〈2〉〉val (Ω \Müller(F))(s) = 1.
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3 Memory Bound for Qualitative Winning Strategies

In this section we present optimal memory bounds for pure strategies with
respect to qualitative (almost-sure and positive) winning for 21/2-player game
graphs with Müller winning conditions. The result is obtained by a generaliza-
tion of the result of [7] and depends on the novel constructions of Zielonka [18]
for 2-player games. In [7] the authors use an insightful analysis of Zielonka’s
construction to present an upper bound and a matching lower bound on mem-
ory of sure winning strategies in 2-player games with Müller objectives. In this
section we generalize the result of [7] to show that the same upper bound holds
for qualitative winning strategies in 21/2-player games with Müller objectives.
We now introduce some notations and the Zielonka tree of a Müller condition.
Notation. Let F ⊆ P(C) be a winning condition. For D ⊆ C we define (F �
D) ⊆ P(D) as the set {D′ ∈ F | D′ ⊆ D }. For a Müller condition F ⊆ P(C)
we denote by F the complementary condition, i.e., F = P(C) \ F . Similarly for
an objective Φ we denote by Φ the complementary objective, i.e., Φ = Ω \ Φ.

Definition 1 (Zielonka tree of a winning condition [18]). The Zielonka
tree of a winning condition F ⊆ P(C), denoted ZF ,C , is defined inductively as
follows: (a) if C �∈ F , then ZF ,C = ZF ,C, where F = P(C) \ F ; and (b) if
C ∈ F , then the root of ZF ,C is labeled with C. Let C0, C1, . . . , Ck−1 be all the
maximal sets in {X �∈ F | X ⊆ C }. Then we attach to the root, as its subtrees,
the Zielonka trees of F � Ci, i.e., ZF�Ci,Ci , for i = 0, 1, . . . , k − 1. Hence the
Zielonka tree is a tree with nodes labeled by sets of colors. A node of ZF ,C is a
0-level node if it is labeled with a set from F , otherwise it is a 1-level node. In
the sequel we write ZF to denote ZF ,C if C is clear from the context.

Definition 2 (The number mF of Zielonka tree). Let F ⊆ P(C) be a
winning condition and ZF0,C0 ,ZF1,C1 , . . . ,ZFk−1,Ck−1 be the subtrees attached
to the root of the tree ZF ,C, where Fi = F � Ci ⊆ P(Ci) for i = 0, 1, . . . , k − 1.
We define the number mF inductively as follows

mF =

⎧
⎪⎨

⎪⎩

1 if ZF ,C does not have any subtrees,
max{mF0,,mF1, . . . ,mFk−1 } if C �∈ F , (1-level node)
∑k−1

i=1 mFi if C ∈ F , (0-level node).

Our goal is to show that for winning conditions F pure finite-memory qualita-
tive winning strategies of size mF exist in 21/2-player games. This proves the
upper bound. The results of [7] already established the matching lower bound
for 2-player games. This establishes the optimal bound of memory of qualita-
tive winning strategies for 21/2-player games. We start with the key notion of
attractors that will be crucial in our proofs.

Definition 3 (Attractors). Given a 21/2-player game graph G and a set U ⊆ S
of states, such that G � U is a subgame, and T ⊆ S we define Attr1,©(T, U) as
follows: T0 = T ∩ U and for j ≥ 0 we define Tj+1 from Tj as follows

Tj+1 = Tj ∪ {s ∈ (S1∪S©)∩U | E(s)∩Tj �= ∅} ∪ {s ∈ S2∩U | E(s)∩U ⊆ Tj }.
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and A = Attr1,©(T, U) =
⋃
j≥0 Tj. We obtain Attr2,©(T, U) by exchanging the

roles of player 1 and player 2. A pure memoryless attractor strategy σA : (A \
T ) ∩ S1 → S for player 1 on A to T is as follows: for i > 0 and a state
s ∈ (Ti \ Ti−1) ∩ S1, the strategy σA(s) ∈ Ti−1 chooses a successor in Ti−1

(which exists by definition).

Lemma 1 (Attractor properties). Let G be a 21/2-player game graph and
U ⊆ S be a set of states such that G � U is a subgame. For a set T ⊆ S of states,
let Z = Attr1,©(T, U). Then the following assertions hold.

1. G � (U \ Z) is a subgame.
2. Let σZ be a pure memoryless attractor strategy for player 1. For all strategies

π for player 2 in the subgame G � U and for all states s ∈ U we have
(a) if Prσ

Z ,π
s (Reach(Z)) > 0, then Prσ

Z ,π
s (Reach(T )) > 0; and

(b) if Prσ
Z ,π
s (Büchi(Z)) > 0, then Prσ

Z ,π
s (Büchi(T ) | Büchi(Z)) = 1.

We now present the main result of this section (upper bound on memory for
qualitative winning strategies).

Theorem 3 (Qualitative forgetful determinacy). Let (G,C, χ,F) be a
21/2-player game with Müller winning condition F for player 1. Let Φ =
Müller(F), and consider the following sets

W>0
1 =〈〈1〉〉pos (Φ); W1 =〈〈1〉〉almost (Φ); W>0

2 =〈〈2〉〉pos(Φ); W2 = 〈〈2〉〉almost (Φ).

The following assertions hold.

1. We have (a) W>0
1 ∪W2 = S and W>0

1 ∩W2 = ∅; and (b) W>0
2 ∪W1 = S

and W>0
2 ∩W1 = ∅.

2. (a) Player 1 has a pure strategy σ with memory of size mF such that for all
states s ∈ W>0

1 and for all strategies π for player 2 we have Prσ,πs (Φ) > 0;
and (b) player 2 has a pure strategy π with memory of size mF such that for
all states s ∈W2 and for all strategies σ for player 1 we have Prσ,πs (Φ) = 1.

3. (a) Player 1 has a pure strategy σ with memory of size mF such that for all
states s ∈ W1 and for all strategies π for player 2 we have Prσ,πs (Φ) = 1; and
(b) player 2 has a pure strategy π with memory of size mF such that for all
states s ∈ W>0

2 and for all strategies σ for player 1 we have Prσ,πs (Φ) > 0.

Proof. The first part of the result is a consequence of Theorem 2. We will con-
centrate on the proof for the result for part 2. The last part (part 3) follows from
a symmetric argument.

The proof goes by induction on the structure of the Zielonka tree ZF ,C of the
winning condition F . We assume that C �∈ F . The case when C ∈ F can be
proved by a similar argument: if C ∈ F , then we consider ĉ �∈ C and consider the
winning condition F̂ = F ⊆ P(C ∪ { ĉ }) with C ∪ { ĉ } �∈ F̂ . Hence we consider,
without loss of generality, that C �∈ F and let C0, C1, . . . , Ck−1 be the label of
the subtrees attached to the root C, i.e., C0, C1, . . . , Ck−1 are maximal subset of
colors that appear in F . We will define by induction a non-decreasing sequence
of sets (Uj)j≥0 as follows. Let U0 = ∅ and for j > 0 we define Uj below:



146 K. Chatterjee

1. Aj = Attr1,©(Uj−1, S) and Xj = S \Aj ;
2. Dj = C \ Cj mod k and Yj = Xj \ Attr2,©(χ−1(Dj), Xj);
3. let Zj be the set of positive winning states for player 1 in (G �
Yj , Cj mod k, χ,F � Cj mod k), (i.e., Zj = 〈〈1〉〉pos (Müller(F �
Cj mod k)) in G � Yj); hence (Yj \Zj) is almost-sure winning for player 2 in
the subgame; and

4. Uj = Aj ∪ Zj .

We start with an observation.
Observation 1. For all s ∈ S2 ∩ Zj , we have E(s) ⊆ Zj ∪ Aj . This follows from
the following case analysis.
– Since Yj is a complement of an attractor set Attr2,©(χ−1(Dj), Xj), it follows

that for all states s ∈ S2 ∩ Yj we have E(s) ∩ Xj ⊆ Yj . It follows that
E(s) ⊆ Yj ∪Aj .

– Since player 2 can win almost-surely from the set Yj \Zj , if a state s ∈ Yj∩S2

has an edge to Yj \ Zj , then s ∈ Yj \ Zj. Hence for s ∈ S2 ∩ Zj we have
E(s) ∩ (Yj \ Zj) = ∅.

We will denote by Fi the winning condition F � Ci, for i = 0, 1, . . . , k − 1,
and F i = P(Ci) \ Fi. By induction hypothesis on Fi = F � Cj mod k, player 1
has a pure positive winning strategy of size mFi from Zj and player 2 has a
pure almost-sure winning strategy of size mFi

from Yj \ Zj. Let W =
⋃
j≥0 Uj .

We will show in Lemma 2 that player 1 has a pure positive winning strategy of
size mF from W ; and then in Lemma 3 we will show that player 2 has a pure
almost-sure winning strategy of size mF from S \W . This completes the proof.
We now prove the Lemmas 2 and 3.

Lemma 2. Player 1 has a pure positive winning strategy of size mF from W .

Proof. By induction hypothesis on Uj−1 player 1 has a pure positive winning
strategy σUj−1 of sizemF from Uj−1. From the set Aj = Attr1,©(Uj−1, S), player 1
has a pure memoryless attractor strategy σAj to bring the game to Uj−1 with
positive probability (Lemma 1(part 2.(a))), and then use σUj−1 and ensure win-
ning with positive probability from the set Aj . Let σZj be the pure positive
winning strategy for player 1 in Zj of size mFi , where i = j mod k. We now
show the combination of strategies σUj−1, σAj and σZj ensure positive probability
winning for player 1 from Uj. If the play starts at a state s ∈ Zj, then player 1
follows σZj . If the play stays in Yj for ever, then the strategy σZj ensures that
player 1 wins with positive probability. By observation 1 of Theorem 3, for all
states s ∈ Yj ∩ S2, we have E(s) ⊆ Yj ∪ Aj . Hence if the play leaves Yj , then
player 2 must chose an edge to Aj . In Aj player 1 can use the attractor strategy
σAj followed by σUj−1 to ensure positive probability win. Hence if the play is in
Yj for ever with probability 1, then σZj ensures positive probability win, and if
the play reaches Aj with positive probability, then σAj followed by σUj−1 ensures
positive probability win.

We now formally present σUj defined on Uj. Let σZj = (σZj,u, σ
Z
j,m) be the strat-

egy obtained from inductive hypothesis; defined on Zj (i.e., arbitrary elsewhere)



Optimal Strategy Synthesis in Stochastic Müller Games 147

of size mFi , where i = j mod k, and ensure winning with positive probability on
Zj . Let σZj,u be the memory-update function and σZj,m be the next-move function
of σZj . We assume the memory MFi of σZj to be the set { 1, 2, . . . ,mFi }. The
strategy σAj : (Aj \ Uj−1) ∩ S1 → Aj is a pure memoryless attractor strategy on
Aj to Uj−1. The strategy σUj is as follows: the memory-update function and the
next-move function is

σUj,u(s,m) =

⎧
⎪⎨

⎪⎩

σUj−1,u(s,m) s ∈ Uj−1

σZj−1,u(s,m) s ∈ Zj ,m ∈MFi

1 otherwise.

σUj,m(s,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σUj−1,m(s,m) s ∈ Uj−1 ∩ S1

σZj−1,m(s,m) s ∈ Zj ∩ S1,m ∈MFi

σZj−1,m(s, 1) s ∈ Zj ∩ S1,m �∈MFi

σAj (s) s ∈ (Aj \ Uj−1) ∩ S1.

The strategy σUj formally defines the strategy described and proves the result.

Lemma 3. Player 2 has a pure almost-sure winning strategy of size mF from
S \W .

Proof. Let 
 ∈ N be such that 
 mod k = 0 and W = U�−1 = U� = U�+1 =
· · · = U�+k−1. From the equality W = U�−1 = U� we have Attr1,©(W,S) = W .
Let us denote by W = S \W . Hence G � W is a subgame (by Lemma 1), and
also for all s ∈ W ∩ (S1 ∪ S©) we have E(s) ⊆ W . The equality U�+i−1 = U�+i
implies that Z�+i = ∅. Hence for all i = 0, 1, . . . , k − 1, we have Z�+i = ∅. By
inductive hypothesis for all i = 0, 1, . . . , k − 1, player 2 has a pure almost-sure
winning strategy πi of size mFi

in the game (G � Y�+i, Ci, χ,F � Ci).
We now describe the construction of a pure almost-sure winning strategy π∗

for player 2 in W . For Di = C \ Ci we denote by D̂i = χ−1(Di) the set of
states with colors Di. If the play starts in a state in Y�+i, for i = 0, 1, . . . , k− 1,
then player 2 uses the almost-sure winning strategy πi. If the play leaves Y�+i,
then the play must reach W \Y�+i = Attr2,©(D̂i,W ), since player 1 and random
states do not have edges to W . In Attr2,©(D̂i,W ), player 2 plays a pure mem-
oryless attractor strategy to reach the set D̂i with positive probability. If the
set D̂i is reached, then a state in Y(�+i+1) mod k or in Attr2,©

(
D̂(i+1) mod k,W

)

is reached. If Y(�+i+1) mod k is reached π(i+1) mod k is followed, and otherwise
the pure memoryless attractor strategy to reach the set D̂(i+1) mod k with pos-
itive probability is followed. Of course, the play may leave Y(�+i+1) mod k, and
reach Y(�+i+2) mod k, and then we would repeat the reasoning, and so on. Let
us analyze various cases to prove that π∗ is almost-sure winning for player 2.

1. If the play finally settles in some Y�+i, for i = 0, 1, . . . , k− 1, then from this
moment player 2 follows πi and ensures that the objective Φ is satisfied with
probability 1. Formally, for all states s ∈W , for all strategies σ for player 1
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we have Prσ,π
∗

s (Φ | coBüchi(Y�+i)) = 1. This holds for all i = 0, 1, . . . , k − 1
and hence for all states s ∈ W , for all strategies σ for player 1 we have
Prσ,π

∗
s (Φ |

⋃
0≤i≤k−1 coBüchi(Y�+i)) = 1.

2. Otherwise, for all i = 0, 1, . . . , k−1, the set W \Y�+i = Attr2,©(D̂i,W ) is vis-
ited infinitely often. By Lemma 1, given Attr2,©(D̂i,W ) is visited infinitely
often, then the attractor strategy ensures that the set D̂i is visited infinitely
often with probability 1. Formally, for all states s ∈ W , for all strategies σ
for player 1, for all i = 0, 1, . . . , k−1, we have Prσ,π

∗
s (Büchi(D̂i) | Büchi(W \

Y�+i)) = 1; and also Prσ,π
∗

s (Büchi(D̂i) |
⋂

0≤i≤k−1 Büchi(W \ Y�+i)) = 1. It
follows that for all states s ∈ W , for all strategies σ for player 1 we have
Prσ,π

∗
s (

⋂
0≤i≤k−1 Büchi(D̂i) |

⋂
0≤i≤k−1 Büchi(W \ Y�+i)) = 1. Hence the

play visits states with colors not in Ci with probability 1. Hence the set of col-
ors visited infinitely often is not contained in any Ci. Since C0, C1, . . . , Ck−1

are all the maximal subsets of F , we have the set of colors visited infinitely
often is not in F with probability 1, and hence player 2 wins almost-surely.

Hence it follows that for all strategies σ and for all states s ∈ (S \ W ) we
have Prσ,π

∗
s (Φ) = 1. To complete the proof we present precise description of

the strategy π∗ with memory of size mF . Let πi = (πiu, πim) be an almost-sure
winning strategy for player 2 for the subgame on Y�+i with memory MFi

. By
definition we have mF =

∑k−1
i=0 mFi

. Let MF =
⋃k−1
i=0 (MFi

× { i }). This set is
not exactly the set { 1, 2, . . . ,mF }, but has the same cardinality (which suffices
for our purpose). We define the strategy π∗ as follows:

π∗u(s, (m, i)) =

{
πiu(s, (m, i)) s ∈ Y�+i
(1, i+ 1 mod k) otherwise.

π∗m(s, (m, i)) =

⎧
⎪⎨

⎪⎩

πim(s, (m, i)) s ∈ Y�+i
πLi(s) s ∈ Li \ D̂i

si s ∈ D̂i, si ∈ E(s) ∩W.

where Li = Attr2,©(D̂i,W ); πLi is a pure memoryless attractor strategy on
Li to D̂i, and si is a successor state of s in W (such a state exists since W
induces a subgame). This formally represents π∗ and the size of π∗ satisfies
the required bound. Observe that the disjoint sum of all MFi

was required since
Y�, Y�+1, . . . , Y�+k−1 may not be disjoint and the strategy π∗ need to know which
Yj the play is in.

Lower bound. In [7] the authors show a matching lower bound for sure winning
strategies in 2-player games. In 2-player games any pure almost-sure winning or
any pure positive winning strategy is also a sure winning strategy. This obser-
vation along with the result of [7] gives us the following result.

Theorem 4 (Lower bound [7]). For all Müller winning conditions F ⊆
P(C), there is a 2-player game (G,C, χ,F) (with a 2-player game graph G) such
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that every pure almost-sure and positive winning strategy for player 1 requires
memory of size at least mF ; and every pure almost-sure and positive winning
strategy for player 2 requires memory of size at least mF .

4 Memory Bound for Optimal Strategies

In this section we extend the sufficiency results for families of strategies from
almost-sure winning to optimality with respect to all Müller objectives. In the
following, we fix a 21/2-player game graph G. We first present some definitions.

Definition 4 (Value classes). Given a Müller objective Φ, for every real
r ∈ [0, 1] the value class with value r is VC(Φ, r) = { s ∈ S | 〈〈1〉〉val (Φ)(s) = r }
is the set of states with value r for player 1. For r ∈ [0, 1] we denote by
VC(Φ,> r) =

⋃
q>r VC(Φ, q) the value classes greater than r and by VC(Φ,<

r) =
⋃
q<r VC(Φ, q) the value classes smaller than r.

Definition 5 (Boundary probabilistic states). Given a value class
VC(Φ, r), a state s ∈ VC(Φ, r) ∩ S© is a boundary probabilistic state if
E(s) ∩ (S \ VC(Φ, r)) �= ∅, i.e., the probabilistic state has an edge out of the
value class. For a value class VC(Φ, r) we denote by Bnd(Φ, r) the set of bound-
ary probabilistic states of value class r.

Observation. For a state s ∈ Bnd(Φ, r) we have E(s) ∩ VC(Φ,> r) �= ∅ and
E(s) ∩ VC(Φ,< r) �= ∅, i.e., the boundary probabilistic states have edges to
higher and lower value classes. It follows that for all Müller objectives Φ we have
Bnd(Φ, 1) = ∅ and Bnd(Φ, 0) = ∅.
Reduction of a value class. Given a value class VC(Φ, r), let Bnd(Φ, r) be
the set of boundary probabilistic states in VC(Φ, r). We denote by GBnd(Φ,r) the
subgame where every boundary probabilistic state in Bnd(Φ, r) is converted to
an absorbing state (state with a self-loop). We denote by GΦ,r = GBnd(Φ,r) �
VC(Φ, r): this is a subgame since every value class is δ-live, and δ-closed as all
states in Bnd(Φ, r) are converted to absorbing states.

Lemma 4 (Almost-sure reduction). Let G be a 21/2-player game graph and
F ⊆ P(C) be a Müller winning condition. Let Φ = Müller(F). For 0 < r < 1,
the following assertions hold.

1. Player 1 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈1〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in GΦ,r.

2. Player 2 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈2〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in GΦ,r.

Lemma 5 (Almost-sure to optimality [4]). Let G be a 21/2-player game
graph and F ⊆ P(C) be a Müller winning condition. Let Φ = Müller(F). Let σ
be a strategy such that (a) σ is an almost-sure winning strategy from the almost-
sure winning states (〈〈1〉〉almost (Φ) in G); and (b) σ is an almost-sure winning
strategy for objective Φ ∪ Reach(Bnd(Φ, r)) in the game GΦ,r, for all 0 < r < 1.
Then σ is an optimal strategy.
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Müller reduction for GΦ,r. Given a Müller winning condition F and the
objective Φ = Müller(F), we consider the game GΦ,r with the objective Φ ∪
Reach(Bnd(Φ, r)) for player 1. We present a simple reduction to a game with
objective Φ. The reduction is achieved as follows: without loss of generality we
assume F �= ∅, and let F ∈ F and F = { cF1 , cF2 , . . . , cFf }. We construct a
game graph G̃Φ,r with objective Φ for player 1 as follows: convert every state
sj ∈ Bnd(Φ, r) to a cycle Uj = { sj1, s

j
2, . . . , s

j
f } with χ(sji ) = cFi , i.e., once sj

is reached the cycle Uj is repeated with χ(Uj) ∈ F . An almost-sure winning
strategy in GΦ,r with objective Φ∪Reach(Bnd(Φ, r)), is an almost-sure winning
strategy in G̃Φ,r with objective Φ; and vice-versa. The present reduction along
with Lemma 4 and Lemma 5 gives us Lemma 6. Lemma 6 along with Theorem 3
gives us Theorem 5.

Lemma 6. For all Müller winning conditions F , the following assertions hold.

1. If the family of pure finite-memory strategies of size 
PF suffices for almost-
sure winning on 21/2-player game graphs, then the family of pure finite-
memory strategies of size 
PF suffices for optimality on 21/2-player game
graphs.

2. If the family of randomized finite-memory strategies of size 
RF suffices for
almost-sure winning on 21/2-player game graphs, then the family of random-
ized finite-memory strategies of size 
RF suffices for optimality on 21/2-player
game graphs.

Theorem 5. For all Müller winning conditions F , the family of pure finite-
memory strategies of size mF suffices for optimality on 21/2-player game graphs.

5 An Improved Bound for Randomized Strategies

We now show that if a player plays randomized strategies, then the upper bound
on memory for optimal strategies can be improved. We first present the notions
of an upward closed restriction of a Zielonka tree. The number mU

F of such
restrictions of the Zielonka tree will be in general lower than the number mF
of Zielonka trees, and we show that randomized strategies with memory of size
mU
F suffices for optimality.

Upward closed sets. A set F ⊆ P(C) is upward closed if for all F ∈ F and
all F ⊆ F1 we have F1 ∈ F , i.e., if a set F is in F , then all supersets F1 of F
are in F as well.
Upward closed restriction of Zielonka tree. The upward closed restriction
of a Zielonka tree for a Müller winning condition F ⊆ P(C), denoted as ZUF ,C ,
is obtained by making upward closed conditions as leaves. Formally, we define
ZUF ,C inductively as follows:

1. if F is upward closed, then ZUF ,C is leaf labeled F (i.e., it has no subtrees);
2. otherwise
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(a) if C �∈ F , then ZUF ,C = ZUF ,C , where F = P(C) \ F .

(b) if C ∈ F , then the root of ZUF ,C is labeled with C; and let
C0, C1, . . . , Ck−1 be all the maximal sets in {X �∈ F | X ⊆ C }; then we
attach to the root, as its subtrees, the Zielonka upward closed restricted
trees ZUF ,C of F � Ci, i.e., ZUF�Ci,Ci

, for i = 0, 1, . . . , k − 1.

The number mU
F for ZUF ,C is the number defined as the number mF was defined

for the tree ZF ,C .
We will prove randomized strategies of size mU

F suffices for optimality. To
prove this result, we first prove that randomized strategies of size mU

F suffices
for almost-sure winning. The result then follows from Lemma 6. To prove the
result for almost-sure winning we take a closer look at the proof of Theorem 3.
The inductive proof characterizes that if existence of randomized memoryless
strategies can be proved for 21/2-player games with Müller winning conditions
that appear in the leaves of the Zielonka tree, then the inductive proof generalizes
to give a bound as in Theorem 3. Hence to prove an upper bound of size mU

F for
almost-sure winning, it suffices to show that randomized memoryless strategies
suffices for upward closed Müller winning conditions. In [3] it was shown that for
all 21/2-player games randomized memoryless strategies suffices for almost-sure
winning for upward closed objectives. This gives us Theorem 6.

Theorem 6. For all Müller winning conditions F , the family of randomized
finite-memory strategies of size mU

F suffices for optimality on 21/2-player game
graphs.

Remark. In general we have mU
F < mF . Consider for example F ⊆ P(C),

where C = { c1, c2, . . . , ck }. For the Müller winning condition F = { C }. We
have mU

F = 1, and mF = |C|.

6 Conclusion

In this work we present optimal memory bounds for pure almost-sure, positive
and optimal strategies for 21/2-player games with Müller winning conditions.
We also present improved memory bounds for randomized strategies. Unlike the
results of [7] our results do not extend to infinite state games: for example, the
results of [9] showed that even for 21/2-player pushdown games optimal strategies
need not exist, and for ε > 0 even ε-optimal strategies may require infinite
memory. For lower bound of randomized strategies the constructions of [7] do
not work: in fact for the family of games used for lower bounds in [7] randomized
memoryless almost-sure winning strategies exist. However, it is known that there
exist Müller winning conditions F ⊆ P(C), such that randomized almost-sure
winning strategies may require memory |C|! [11]. However, whether a matching
lower bound of size mU

F can be proved in general, or whether the upper bound of
mU
F can be improved and a matching lower bound can be proved for randomized

strategies with memory remains open.
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Abstract. We consider games where the winning conditions are disjunc-
tions (or dually, conjunctions) of parity conditions; we call them gener-
alized parity games. These winning conditions, while ω-regular, arise
naturally when considering fair simulation between parity automata,
secure equilibria for parity conditions, and determinization of Rabin au-
tomata. We show that these games retain the computational complexity
of Rabin and Streett conditions; i.e., they are NP-complete and co-NP-
complete, respectively. The (co-)NP-hardness is proved for the special
case of a conjunction/disjunction of two parity conditions, which is the
case that arises in fair simulation and secure equilibria. However, con-
sidering these games as Rabin or Streett games is not optimal. We give
an exposition of Zielonka’s algorithm when specialized to this kind of
games. The complexity of solving these games for k parity objectives
with d priorities, n states, and m edges is O(n2kd · m) · (k·d)!

d!k
, as com-

pared to O(n2kd ·m)·(k·d)! when these games are solved as Rabin/Streett
games. We also extend the subexponential algorithm for solving parity
games recently introduced by Jurdziński, Paterson, and Zwick to gen-
eralized parity games. The resulting complexity of solving generalized
parity games is nO(

√
n) · (k·d)!

d!k
. As a corollary we obtain an improved al-

gorithm for Rabin and Streett games with d pairs, with time complexity
nO(

√
n) · d!.

1 Introduction

Games offer a natural framework for reasoning about systems. For example, two-
player games arise in controller synthesis. We consider the controller that we
wish to synthesize as a player in a game against an environment. The controller
has to come up with a strategy that will allow it to decide on its action given
environment inputs such that regardless of environment actions some goal is
satisfied [18].

A two-player game is a finite or infinite directed graph where the vertices
are partitioned between the two players. A play proceeds by moving a token
between the vertices of the graph. If the token is found on a vertex of player 1,
she chooses an outgoing edge and moves the token along that edge. If the token
is found on a vertex of player 2, she gets to choose the outgoing edge. The result
� This research was supported in part by the Swiss National Science Foundation, and
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is an infinite sequence of vertices. In order to determine the winner in a play we
consider the infinity set, the set of states occurring infinitely often in the play.
There are several methods to define acceptance conditions that determine which
infinity sets are winning for which player. We solve a game by computing the
set of states from which player 1 has a strategy to resolve her choices so that
regardless of player 2’s choices the play is winning; this is called the winning set
of player 1. In the games considered here, the winning set of player 1 and the
winning set of player 2 (defined dually) form a partition of the vertices of the
game [13].

The class of Rabin [17] and Streett [21] winning conditions are cannonical forms
to express all ω-regular winning conditions. Both conditions are defined using
a set of pairs of subsets of the vertices of the graph. In order to win the Rabin
condition over {〈E1, F1〉, . . . , 〈Ek, Fk〉}, the infinity set has to intersect Ei and
not intersect Fi for some i. The Streett winning condition is the dual of the Rabin
condition. In order to win the Streett condition over {〈E1, F1〉, . . . , 〈Ek, Fk〉}, the
infinity set has to either be disjoint from Ei or to intersect Fi for every i. Rabin
and Streett games with n vertices, m edges, and k pairs can be solved in time
O(m · nk · k!) [16].

Another general acceptance condition is the parity acceptance condition [7].
In the parity condition, every vertex has a priority and a play is won if the
maximal priority visited infinitely often is even. The parity condition is a special
case of Rabin and Streett conditions which is closed under complement. While
Rabin games are NP-complete (and Streett co-NP-complete) [6], parity games
are in NP ∩ co-NP [7]. Solving a parity game with m edges, n vertices, and 2k
priorities can be done in time O(m · nk) [11] or nO(

√
n) [12].

In this paper, we are interested in games where the winning condition is a
disjunction (dually, conjunction) of parity conditions. That is, instead of con-
sidering one function assigning priorities to vertices, we consider a set of such
functions. A play is winning according to this definition if for one of the func-
tions the maximal priority visited infinitely often is even. We call these winning
conditions generalized parity.

Generalized parity winning conditions arise naturally in several scenarios. As
mentioned, one of the main motivations for considering two-player games is con-
troller synthesis. In the classical setting we consider the system playing against
an arbitrary environment. Sometimes, it makes more sense to consider the case
where the environment has a goal of its own. In such a case, we are searching for
some equilibrium between the system and the environment in which both satisfy
their requirements. This led to the introduction of secure equilibria [2]. When
both players have parity winning conditions, the solution of secure equilibria
requires considering a game where the winning condition is the implication be-
tween two parity conditions. As parity objectives are closed under complement,
we can think about this as either the disjunction or the conjunction of two parity
conditions.

Two-player games arise also in the context of simulation [14,9]. Simulation
is an important precondition for language containment between automata [4,9]
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and is also used in the context of minimization of automata [8,20,1]. Simula-
tion between parity automata (automata whose acceptance condition is parity)
is naturally framed as a game whose winning condition is again the implica-
tion between two parity conditions. Finally, the disjunction of parity conditions
also arises when considering the determinization of Rabin and parity automata.
Given a Rabin automaton with one pair, we know how to create an equivalent
deterministic parity automaton [19,15]. It follows that in order to determinize a
Rabin automaton with k pairs, we can consider the disjunction of determinis-
tic parity automata. The acceptance condition of such an automaton is again a
disjunction of parity conditions.

As explained, parity conditions are a special case of Rabin and Streett con-
ditions. It follows that generalized parity conditions are again a special case of
Rabin and Streett conditions. Indeed, every parity condition is in particular a
Rabin condition, and a disjunction of Rabin conditions is again a Rabin condi-
tion. Dually, every parity condition is a Streett condition, and a conjunction of
Streett conditions is again a Streett condition. On the other hand, generalized
parity conditions are also more general than Rabin and Streett conditions. This
is because a Rabin condition is a disjunction of parity conditions with three pri-
orities, and a Streett condition is a conjunction of parity conditions with three
priorities. It is an interesting question whether generalized parity conditions re-
tain the computational hardness of Rabin and Streett conditions. We would also
like to devise specialized algorithms for generalized parity conditions that out-
perform the natural reduction to Rabin and Streett conditions. These are the
two questions considered in this paper.

We show that generalized parity conditions are NP and co-NP complete, sug-
gesting that the computational complexity of Rabin and Streett conditions is
retained. Our lower bound applies already to the special case of a disjunction/
conjunction of two parity conditions, which is the case that arises in secure
equilibria and in fair simulation.

We give specialized algorithms that outperform the reduction of general-
ized parity conditions to Rabin and Streett conditions. Specifically, Zielonka’s
algorithm [22] when specialized to a disjunction of k parity objectives with
d priorities works in time proportional to O(m · n2kd · (k·d)!

d!k ) (compared to
O(m · n2kd · (k · d)!) when these games are solved as Rabin or Streett games).
We generalize the techniques of the subexponential algorithm for solving par-
ity games [12] to generalized parity games. The resulting complexity of solv-
ing generalized parity games is nO(

√
n) · (k·d)!

d!k
. As a corollary we obtain an

improved algorithm for Rabin and Streett games with k pairs, with time com-
plexity nO(

√
n) · k!, as compared to the previous best known algorithm with

time complexity O(m · nk · k!) [16].
In the full version we also show how to extend the direct rank computation

[11,16] to generalized parity conditions. The resulting complexity of solving gen-
eralized parity games is O(m · nkd · (k·d)!

d!k
) (as compared to O(m · nkd · (k · d)!)).
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2 Definitions

We consider turn-based deterministic games played by two players with a con-
junction / disjunction of parity objectives; we call them generalized parity games.
We define game graphs, plays, strategies, objectives, and the notion of winning.

Game graphs. A game graph G = ((S,E), (S1, S2)) consists of a directed graph
(S,E) with a finite state space S and a set E of edges, and a partition (S1, S2)
of the state space S into two sets. The states in S1 are player-1 states, and the
states in S2 are player-2 states. For a state s ∈ S, we write E(s) = {t ∈ S |
(s, t) ∈ E} for the set of successor states of s. We assume that every state has
at least one outgoing edge, i.e., E(s) is nonempty for all states s ∈ S. Given
a set U ⊆ S, if in the subgraph induced by U every state has at least one
outgoing edge, then the subgraph is called a subgame, denoted G � U . Formally,
G � U = ((S ∩ U,E ∩ (U × U)), (S1 ∩ U, S2 ∩ U)).

Plays. A game is played by two players: player 1 and player 2, who form an
infinite path in the game graph by moving a token along edges. They start by
placing the token on an initial state, and then they take moves indefinitely in
the following way. If the token is on a state in S1, then player 1 moves the token
along one of the edges going out of the state. If the token is on a state in S2,
then player 2 does likewise. The result is an infinite path in the game graph;
we refer to such infinite paths as plays. Formally, a play is an infinite sequence
〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write Ω for
the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extend
plays. Formally, a strategy σ for player 1 is a function σ: S∗ ·S1 → S that, given
a finite sequence of states (representing the history of the play so far) which
ends in a player 1 state, chooses the next state. The strategy must choose only
available successors, i.e., for all w ∈ S∗ and s ∈ S1 we have σ(w · s) ∈ E(s). The
strategies for player 2 are defined analogously. We write Σ and Π for the sets of
all strategies for player 1 and player 2, respectively. Strategies in general require
memory to remember the history of plays. An equivalent definition of strategies
is as follows. Let M be a set called memory. A strategy with memory can be
described as a pair of functions: (a) a memory-update function σu: S ×M →M
that, given the memory and the current state, updates the memory; and (b) a
next-state function σn: S×M → S that, given the memory and the current state,
specifies the successor state. The strategy is finite-memory if the memory M is
finite. An important special class of strategies are the memoryless strategies.
A strategy is memoryless if the memory M is a singleton set. The memoryless
strategies do not depend on the history of a play, but only on the current state.
Each memoryless strategy for player 1 can be specified as a function σ: S1 → S
such that σ(s) ∈ E(s) for all s ∈ S1, and analogously for memoryless player-2
strategies. Given a starting state s ∈ S, a strategy σ ∈ Σ for player 1, and
a strategy π ∈ Π for player 2, there is a unique play, denoted ω(s, σ, π) =
〈s0, s1, s2, . . .〉, which is defined as follows: s0 = s and for all k ≥ 0, if sk ∈ S1,
then σ(s0, s1, . . . , sk) = sk+1, and if sk ∈ S2, then π(s0, s1, . . . , sk) = sk+1.
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Conjunction and disjunction of parity objectives. We consider game
graphs with a conjunction of parity objectives for player 1, and the complemen-
tary disjunction of parity objectives for player 2. For a play ω = 〈s0, s1, s2, . . .〉,
we define Inf(ω) = {s ∈ S | sk = s for infinitely many k ≥ 0} to be the set of
states that occur infinitely often in ω. We also define reachability and safety
objectives as they will be useful in the analysis of the algorithms.
Reachability and safety objectives. Given two sets T, F ⊆ S of states, the reach-
ability objective Reach(T ) requires that some state in T be visited, and dually,
the safety objective Safe(F ) requires that only states in F be visited. Formally,
the sets of winning plays are Reach(T ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥ 0. sk ∈ T }
and Safe(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F}. The reachability and
safety objectives are dual in the sense that Reach(T ) = Ω \ Safe(S \ T ).
Parity objectives; conjunctions and disjunctions. For d ∈ N, we let [d] =
{0, 1, . . . , d} and [d]+ = {1, 2, . . . , d}. Let p : S → [d] be a function that as-
signs a priority p(s) to every state s ∈ S. The parity objective requires that
the maximal priority occurring infinitely often is even. Formally, the set of win-
ning plays is Parity(p) = {ω ∈ Ω | max(Inf(ω)) is even}. For a priority function
p : S → [d], we denote by p : S → [d+ 1]+ the priority function p(s) = p(s) + 1
for all s ∈ S. Then Parity(p) = Ω \ Parity(p), i.e., parity objectives are
closed under complementation. For i = 1, 2, . . . , k, consider k priority functions
pi : S → [di]. The objective ConjParity(p1, p2, . . . , pk) is the conjunction of the
parity objectives defined by pi, i.e., ConjParity(p1, p2, . . . , pk) =

⋂k
i=1 Parity(pi).

Similarly, the objective DisjParity(p1, p2, . . . , pk) is the disjunction of the par-
ity objectives defined by pi, i.e., DisjParity(p1, p2, . . . , pk) =

⋃k
i=1 Parity(pi).

The conjunction and disjunction of parity objectives are dual in the sense that
ConjParity(p1, p2, . . . , pk) = Ω \ DisjParity(p1, p2, . . . , pk). If all priority func-
tions have range [d] and there are k priority functions, then we refer to this class
of conjunctions and disjunctions of parity objectives as (∧, k, [d]) and (∨, k, [d]),
respectively. Similarly, if all priority functions have range [d]+ and there are k
priority functions, then we refer to this class of conjunctions and disjunctions
of parity objectives as (∧, k, [d]+) and (∨, k, [d]+), respectively. Parity objectives
with priority functions with range [1] are called coBüchi objectives, and with
range [2]+ they are called Büchi objectives.
Rabin and Streett objectives. A Rabin specification for the game graph G is a
finite set F = {〈E1, F1〉, . . . , 〈Ed, Fd〉} of pairs of sets of states, that is, Ej ⊆ S
and Fj ⊆ S for all 1 ≤ j ≤ d. The pairs in F are called Rabin pairs. The
Rabin specification F requires that for some Rabin pair 1 ≤ j ≤ d, all states
in the left set Ej be visited finitely often, and some state in the right set Fj
be visited infinitely often. Thus, the Rabin objective defined by F is the set
Rabin(F) = {ω ∈ Ω | ∃1 ≤ j ≤ d.(Inf(ω) ∩ Ej = ∅ ∧ Inf(ω) ∩ Fj �= ∅)} of
winning plays. The complements of Rabin objectives are called Streett objectives.
A Streett specification for G is likewise a set F = {〈E1, F1〉, . . . , 〈Ed, Fd〉} of pairs
of sets of states Ej ⊆ S and Fj ⊆ S. The pairs in F are called Streett pairs.
The Streett specification F requires that for all Streett pairs 1 ≤ j ≤ d, if some
state in the left set Fj is visited infinitely often, then some state in the right set
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Ej is visited infinitely often. Formally, the Streett objective defined by F is the
set Streett(F) = {ω ∈ Ω | ∀1 ≤ j ≤ d.(Inf(ω) ∩ Ej �= ∅ ∨ Inf(ω) ∩ Fj = ∅)}
of winning plays. The Rabin and Streett objectives are dual in the sense that
Streett(F) = Ω \ Rabin(F). The parity objectives are a subclass of the Rabin
objectives that is closed under complementation. It follows that every parity
objective is both a Rabin objective and a Streett objective.
Relationship between objectives. It may be noted that given k priority
functions p1, p2, . . . , pk with ranges [2d1], [2d2] . . ., [2dk], the disjunction of the
parity objectives can be expressed as a Rabin objective with

∑k
i=1 di pairs, and

the conjunction of the parity objectives can be expressed as a Streett objective
with

∑k
i=1 di pairs. Conversely, a Rabin objective Rabin(F) with k pairs can be

expressed as an objective in (∨, k, [3]+) as follows: for each pair 〈Ei, Fi〉 consider
the priority function pi : S → [3]+ such that pi(s) = 3 if s ∈ Ei, and 2 if s ∈
Fi \ Ei, and 1 otherwise; then DisjParity(p1, p2, . . . , pk) = Rabin(F). Similarly,
a Streett objective Streett(F) with k pairs can be expressed as an objective in
(∧, k, [2]) as follows: for each pair 〈Ei, Fi〉 consider the priority function pi : S →
[2] such that pi(s) = 2 if s ∈ Ei, and 1 if s ∈ Fi \ Ei, and 0 otherwise; then
ConjParity(p1, p2, . . . , pk) = Streett(F).
Winning strategies and sets. Given a game graph G and an objective Φ ⊆ Ω
of winning plays for player 1, a strategy σ ∈ Σ is a winning strategy for player 1
from a state s ∈ S if for all player-2 strategies π ∈ Π , the play ω(s, σ, π) is
winning, i.e., ω(s, σ, π) ∈ Φ. The winning strategies for player 2 are defined
analogously. A state s ∈ S is winning for player 1 with respect to the objective
Φ if player 1 has a winning strategy from s. Formally, the set of winning states
for player 1 with respect to the objective Φ in a game graph G is WG

1 (Φ) = {s ∈
S | ∃σ ∈ Σ. ∀π ∈ Π. ω(s, σ, π) ∈ Φ}. Analogously, the set of winning states
for player 2 with respect to an objective Ψ ⊆ Ω of winning plays for player 2 is
WG

2 (Ψ) = {s ∈ S | ∃π ∈ Π. ∀σ ∈ Σ. ω(s, σ, π) ∈ Ψ}. If the game graph is clear
from the context, we drop the superscript. We say that there exists a memoryless
winning strategy for player 1 with respect to the objective Φ if there exists such
a strategy from all states in W1(Φ); and similarly for player 2.

Theorem 1 (Determinacy and complexity [6])
1. For all game graphs G = ((S,E), (S1, S2)), all Streett objectives Φ for

player 1, and the complementary Rabin objective Ψ = Ω \Φ for player 2, the
following assertions hold.
– We have W1(Φ) = S \W2(Ψ).
– There exists a memoryless winning strategy for player 2, and a finite-

memory winning strategy for player 1.
2. Given a game graph G, a Streett objective Φ for player 1, the complementary

Rabin objective Ψ = Ω\Φ for player 2, and a state s, the problem of deciding
whether s ∈ W2(Ψ) is NP-complete, and deciding whether s ∈ W1(Φ) is co-
NP-complete.

Closed sets and attractors. Two notions that will play key roles in the anal-
ysis of the algorithms are the notions of closed sets and attractors.
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Closed sets. A set U ⊆ S of states is a closed set for player 1 if the following
two conditions hold: (a) for all states u ∈ (U ∩ S1), we have E(u) ⊆ U , i.e., all
successors of player-1 states in U are again in U ; and (b) for all u ∈ (U ∩ S2),
we have E(u) ∩ U �= ∅, i.e., every player 2 state in U has a successor in U . A
player-1 closed set is also called a trap for player 1. The closed sets for player 2
are defined analogously. For every closed set U for player 
, for 
 ∈ {1, 2}, the
game G � U is a subgame.

Proposition 1. Consider a game graph G, and a closed set U for player 2. For
every objective Φ for player 1, we have WG�U

1 (Φ) ⊆WG
1 (Φ).

Attractors. Given a game graph G, a set U ⊆ S of states, and a player 
 ∈ {1, 2},
the set Attr�(U,G) contains the states from which player 
 has a strategy to reach
a state in U against all strategies of the other player; that is, Attr�(U,G) =
W�(Reach(U)). The set Attr1(U,G) can be computed inductively as follows: let
R0 = U ; let Ri+1 = Ri ∪ {s ∈ S1 | E(s) ∩ Ri �= ∅} ∪ {s ∈ S2 | E(s) ⊆
Ri} for all i ≥ 0; then Attr1(U,G) =

⋃
i≥0 Ri. The inductive computation of

Attr2(U,G) is analogous. For all states s ∈ Attr1(U,G), define rank(s) = i if
s ∈ (Ri \Ri−1), that is, rank(s) denotes the least i ≥ 0 such that s is included
in Ri. Define a memoryless strategy σ ∈ Σ for player 1 as follows: for each state
s ∈ (Attr1(U,G)∩S1) with rank(s) = i, choose a successor σ(s) ∈ (Ri−1 ∩E(s))
(such a successor exists by the inductive definition). It follows that for all states
s ∈ Attr1(U,G) and all strategies π ∈ Π for player 2, the play ω(s, σ, π) reaches
U in at most |Attr1(U,G)| transitions.

Proposition 2. For all game graphs G, all players 
 ∈ {1, 2}, and all sets
U ⊆ S of states, the set S \Attr�(U,G) is a closed set for player 
.

Notation. For a game graph G = ((S,E), (S1, S2)), a set U ⊆ S, and 
 ∈ {1, 2},
we write G \Attr�(U,G) to denote the game graph G � (S \Attr�(U,G)).

3 Computational Complexity

In this section we study the computational complexity of generalized parity
games. We consider (∨, k, [d]) and (∧, k, [d]) objectives and present complexity
results varying both k and d. Observe that if both k and d are constants, then
generalized parity games can be solved in polynomial time (by reduction to
Rabin and Streett objectives with a constant number of pairs). The next theorem
completes the complexity analysis. Other than the last hardness result (part 5)
of Theorem 2, all other results can be easily derived (see [3] for details); and
part 5 of Theorem 2 is proved in Lemma 1.

Theorem 2. Given a game graph G, the following assertions hold.
1. For objectives Ψ in (∨, k, [d]) and Φ in (∧, k, [d]), and a state s: whether

s ∈W2(Ψ) and s ∈W1(Φ) can be decided in NP and co-NP, respectively.
2. For objectives Ψ in (∨, k, [3]+) and Φ in (∧, k, [2]), and a state s: (a) whether

s ∈W2(Ψ) is NP-hard, and (b) whether s ∈W1(Φ) is co-NP-hard.
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3. For objectives Φ in (∨, k, [2]+) or (∧, k, [2]+) or (∨, k, [1]) or (∧, k, [1]), and
a state s: whether s ∈ W1(Φ) (or s ∈W2(Φ)) can be decided in PTIME.

4. For objectives Φ in (∨, 1, [d]) or (∧, 1, [d]), and a state s: whether s ∈W1(Φ)
(or s ∈W2(Φ)) can be decided in NP ∩ co-NP.

5. For objectives Ψ in (∨, 2, [d]) and Φ in (∧, 2, [d]), and a state s: whether
s ∈W2(Ψ) is NP-hard, and whether s ∈ W1(Φ) is co-NP-hard.

Lemma 1. Given a game graph G, an objective Ψ in (∨, 2, [d]), and a state s,
deciding whether s ∈W2(Ψ) is NP-hard.

Proof. We present a reduction from SAT. Consider a SAT formula ψ with clauses
C0, C1, . . . , Cm over boolean variables x0, x1, . . . , xn. We denote by C the set of
all clauses and by X the set of all variables. A literal is a variable or its negation
(i.e, xi or ¬xi). We denote by l a literal and by L the set of all literals. We
now construct a game graph G = ((S,E), (S1, S2)) and an objective Ψ that is
obtained as a disjunction of two parity objectives.
1. State space and transitions. We have S1 = {s0}; S2 = C ∪ L and E =
{(s0, Ci) | Ci ∈ C} ∪ {(Ci, l) | Ci ∈ C, l occurs in Ci} ∪ {(l, s0) | l ∈ L}.
Hence player 1 chooses between the clauses, and in each clause player 2 can
choose a literal that makes the clause true, and from the literals the next
state is the starting state s0.

2. Priority functions. We specify priority functions p1 : S → [2n] and p2 : S →
[2n] as follows:

p1(s) =

⎧
⎪⎨

⎪⎩

0 s ∈ C; or s = s0;
2k s = xk;
2k + 1 s = ¬xk;

p2(s) =

⎧
⎪⎨

⎪⎩

0 s ∈ C; or s = s0;
2k s = ¬xk;
2k + 1 s = xk;

We analyze the game with objective Ψ = DisjParity(p1, p2) for player 2. Since
the objective is a Rabin objective it suffices to analyze the memoryless strategies
as candidate winning strategies for player 2. We analyze the following two cases.
1. Satisfiability implies winning. Let A : X → {0, 1} be a satisfying assignment

for ψ. We define Â : X → L as follows: for x ∈ X we have Â(x) = x if
A(x) = 1 and ¬x otherwise. Fix a memoryless strategy π : S2 → S for
player 2, as follows: for Ci ∈ C pick a literal lk that appears in Ci and
Â(xk) = lk (such a literal exists since A is a satisfying assignment), and set
π(Ci) = lk. Now consider any strategy σ for player 1. Let lj be the maximal
literal that appear infinitely often along the play ω(s0, σ, π). Observe that
both xj and ¬xj cannot appear infinitely often. If lj = xj , then Parity(p1)
is satisfied, and if lj = ¬xj , then Parity(p2) is satisfied. Hence, player 2 has
a winning strategy.

2. Winning implies satisfiability. Consider a pure memoryless strategy π for
player 2. If there exists Cj , Ck such that π(Cj) = xi and π(Ck) = ¬xi, then
we show that π is not winning for player 2; otherwise, it is easy to construct
a satisfying assignment from the memoryless strategy π. Consider Cj , Ck
such that π(Cj) = xi and π(Ck) = ¬xi, and the strategy σ for player 1 that
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alternates between Cj and Ck at s0. Then we have max(p�(Inf(ω(s, σ, π)))) =
max{p�(xi), p�(¬xi)} = 2i+1, for 
 ∈ {1, 2}. It follows that π is not a winning
strategy for player 2, contrary to our assumption.

4 The Classical Algorithm

We first present the classical algorithm (Zielonka’s algorithm) for games with
conjunctions and disjunctions of parity objectives. We start with an informal de-
scription of the algorithm; a formal description is given as Algorithm 1. Without
loss of generality we consider all priority functions to have the range [1..(2d+1)]
for some d.

Notations. We consider k priority functions p1 : S → [2d1], p2 : S →
[2d2], . . . , pk : S → [2dk]. The objective Φ for player 1 is the conjunction
ConjParity(p1, p2, . . . , pk) of the parity objectives and the objective for player 2
is the complementary objective Ψ = DisjParity(p1, p2, . . . , pk). We use the fol-
lowing notation: (a) for pi : S → [2di], we denote by MaxEven(pi) = p−1(2di)
the set of maximal even priority states, and if we consider a subgame defined
by a subset Sj of states with pi : Sj → [2d̂i] for d̂i ≤ di, we denote by
MaxEven(pi) = p−1(2d̂i) the maximal even priority states in the subgame; and
(b) for pi : S → [2di], we denote by MaxOdd(pi) = p−1(2di − 1) the set of maxi-
mal odd priority states. If we consider a subgame defined by a subset Sj of states
with pi : Sj → [2d̂i] for d̂i ≤ di, then we denote by MaxOdd(pi) = p−1(2d̂i − 1)
the maximal odd priority states in the subgame.

Informal description of the classical algorithm. The algorithm computes
the set of states that are winning for player 2 according to the disjunction of
parity conditions. If all parity conditions contain only states of priority 1, then
obviously player 2 is losing. Indeed, every infinite play visits the maximal pri-
ority 1 according to all disjuncts. Suppose that no such void parity condition
exists. The algorithm proceeds by choosing one of the disjuncts. Let d denote
the maximal odd priority occurring in this disjunct. Then we compute the states
from which player 2 wins by visiting priority d finitely often and visiting d − 1
infinitely often, or eventually avoiding both of them and winning according to
the lower priorities of this disjunct or one of the other disjuncts. In order to
compute this set of states, we first compute the set of states from which player 1
can force a visit to priority d; clearly we want to avoid these states so we con-
sider the arena without these states. We now search for a trap of player 1 that
is composed of two parts: first some states with priority d − 1 and player 2’s
attractor to these states, and second, some states that are winning for player 2
with the simpler winning condition. When we find such a trap, we conclude that
it is winning for player 2, remove it from the arena, and continue with the rest.
If we do not find such a trap for every one of the disjuncts, we conclude that
player 1 wins from all the states that remain.

Correctness and time complexity. The following theorem states the cor-
rectness and complexity of Algorithm 1. The correctness proof is similar to the
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Algorithm 1. Classical Algorithm for Disjunction of Parity Objectives
Input: a 2-player game graph G = ((S,E), (S1, S2)) and

priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk].
Output: W2 ⊆ S.
1. return DisjParityWin(G,p1, p2, . . . , pk);

procedure DisjParityWin(G,p1, p2, . . . , pk)
1. if (for all i = 1, 2, . . . , k we have di = 0)

1.1 return ∅;
2. foreach i = 1, 2, . . . , k such that di �= 0

2.1 G1 := G \Attr 1(MaxOdd(pi), G);
2.2 H1 := G1 \Attr 2(MaxEven(pi), G1); j := 0;
2.3 repeat

2.3.1 j := j + 1;
2.3.2 Wj := DisjParityWin(Hj , p1, p2, . . . , pi : Hj → [2di − 1]+, . . . , pk);

2.3.3 W j := Attr 1(Hj \Wj , Gj);

2.3.4 Gj+1 := Gj \W j ;
2.3.5 Hj+1 := Gj+1 \ Attr2(MaxEven(pi), Gj+1);

2.4 until (Wj = ∅ or Wj = Hj);
2.5 if (Wj = Hj)

2.5.1 return Attr 2(Gj , G) ∪ DisjParityWin(G \Attr 2(Gj , G),p1, . . . , pk);
end foreach;

3. return ∅;

correctness proofs in [5,22,10]; see [3] for details. If we denote the run time
of the algorithm by T (n, d1, d2, . . . , dk), then the following recurrence holds:
T (n, d1, d2, . . . , dk) = O(m) + n2 ·

∑k
i=1 T (n− 1, d1, d2, . . . , di − 1, . . . , dk). The

bound T (n, d1, d2, . . . , dk) ≤ O(m · n2d) ·
(

d
d1,d2,...,dk

)
follows.

Theorem 3 (Correctness and run time). Given a game graph G =
((S,E), (S1, S2)) and priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk :
S → [2dk], the following assertions hold.
1. If W is the output of Algorithm 1, then W = W2(DisjParity(p1, p2, . . . , pk)),

and S \W = W1(ConjParity(p1, p2, . . . , pk)).
2. The run time of Algorithm 1 is O(m · n2d) ·

(
d

d1,d2,...,dk

)
, where n = |S|,

m = |E|, and d =
∑k

i=1 di.

Remark. In the case of Rabin or Streett objectives the above algorithm is
identical to the one in [5,22,10]. Indeed, if every disjunct has 3 priorities, then
for all i we have di = 1, and

(
d

d1,d2,...dk

)
is d!. On the other hand, if we reduce

ConjParity(p1, . . . , pk) to a Streett objective, we get d = Σk
i=1di pairs, and the

classical Streett algorithm [22] would compute in time O(m · n2d · d!).

5 A New Algorithm

In this section we present a new algorithm for games with disjunctions and
conjunctions of parity objectives. The algorithm is inspired by the algorithm
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of [12] for parity games. The algorithm is based on the notion of dominions ; it
tries to identify small dominions cheaply. We now define dominions and study
the complexity to compute nonempty dominions (if they exist).
Dominions. Given a game graph G = ((S,E), (S1, S2)) with priority functions
p1, p2, . . . , pk, we consider the objectives Φ = ConjParity(p1, p2, . . . , pk) and Ψ =
DisjParity(p1, p2, . . . , pk) for player 1 and player 2, respectively.
1. A set U ⊆ S is a dominion for player 1, if U is a player-2 closed set and

player 1 has a winning strategy for objective Φ from all states in U in the
subgame G � U ;

2. A set U ⊆ S is a dominion for player 2, if U is a player-1 closed set and
player 2 has a winning strategy for objective Ψ from all states in U in the
subgame G � U .

The following lemma characterizes the computation of dominions (see [3] for
details).

Lemma 2. Let G be a game graph with n states. Consider priority func-
tions p1, p2, . . . , pk, and objectives Φ = ConjParity(p1, p2, . . . , pk) and Ψ =
DisjParity(p1, p2, . . . , pk) for player 1 and player 2, respectively. Let pi : S →
[2di] and d =

∑k
i=1 di. A dominion for player 1 or player 2 of size at most 
,

for 
 ≥ 1, if one exists, can be computed in time nO(�) ·O(d).

We use the following notation in the sequel. Given a game graph G =
((S,E), (S1, S2)) with priority functions p1, p2, . . . , pk, and objectives Φ =
ConjParity(p1, p2, . . . , pk) and Ψ = DisjParity(p1, p2, . . . , pk) we denote by
DisjParityDominion(G, p1, p2, . . . , pk, 
) a procedure that returns a dominion of
size at most 
 for player 2 (if one exists) and runs in time |S|O(�) · O(d); if
the procedure returns empty set, then all dominions for player 2 have at least

 + 1 states. Similarly, ConjParityDominion(G, p1 , p2, . . . , pk, 
) is a procedure
that returns a dominion of size at most 
 for player 1 (if one exists) and runs in
time |S|O(�) · O(d); if the procedure returns the empty set, then all dominions
for player 1 have at least 
+ 1 states.
The new algorithm. The new algorithm is based on the following simple
observations about the sets obtained by the classical algorithm.
Fact 1. The set Gj obtained in Step 2.5.1 of Algorithm 1 is a player-2 dominion
in the game G.
Fact 2. The set Hj \ Wj obtained in Step 2.3.2 of Algorithm 1 is a player-1
dominion in the subgame Gj .
With the above observations we obtain the new algorithm from the classical
algorithm as follows; the formal description is presented as Algorithm 2.
1. Before Step 2 of the classical algorithm (which corresponds to Step 3 of

Algorithm 2) we invoke DisjParityDominion(G, p1, p2, . . . , pk, 
) with 
 =⌈√
|S|

⌉
; if a nonempty set U is obtained, then we remove U and its player-2

attractor as a subset of the player-2 winning set, and proceed on the subgame;
else we proceed as the classical algorithm.
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Algorithm 2. New Algorithm for Disjunction of Parity Objectives
Input: a 2-player game graph G = ((S,E), (S1, S2)) and

priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk : S → [2dk].
Output: W2 ⊆ S.
1. return DisjParityWin(G,p1, p2, . . . , pk);

procedure DisjParityWin(G,p1, p2, . . . , pk)
1. if (for all i = 1, 2, . . . , k we have di = 0)

1.1 return ∅;
2. U :=DisjParityDominion(G, p1, p2, . . . , pk, �) for � =

⌈√|S|
⌉
;

2.1 if (U �= ∅)
2.1.1 return Attr2(U,G) ∪ DisjParityWin(G \Attr2(U,G),p1, p2, . . . , pk);

3. foreach i = 1, 2, . . . , k such that di �= 0
3.1 G1 := G \Attr 1(MaxOdd(pi), G);
3.2 H1 := G1 \Attr 2(MaxEven(pi), G1); j := 0;
3.3 repeat

3.3.1 j := j + 1;

3.3.2 U :=ConjParityDominion(Hj, p1, p2, . . . , pk, �) for � =
⌈√|S|

⌉
;

3.3.2.1 if (U �= ∅)
3.3.2.1.1 W j := Attr1(U,Gj); goto step 3.3.5;

3.3.3 Wj := DisjParityWin(Hj , p1, p2, . . . , pi : Hj → [2di − 1]+, . . . , pk);

3.3.4 W j := Attr 1(Hj \Wj , Gj);

3.3.5 Gj+1 := Gj \W j ;
3.3.6 Hj+1 := Gj+1 \ Attr2(MaxEven(pi), Gj+1);

3.4 until (Wj = ∅ or Wj = Hj);
3.5 if (Wj = Hj)

3.5.1 return Attr 2(Gj , G) ∪ DisjParityWin(G \Attr 2(Gj , G),p1, . . . , pk);
end foreach;

3. return ∅;

2. Before Step 2.3.2 of the classical algorithm (which corresponds to Step 3.3.3
of Algorithm 2), we invoke ConjParityDominion(G, p1 , p2, . . . , pk, 
) with 
 =⌈√
|S|

⌉
; if a nonempty set U is obtained, then we remove U and its player-

1 attractor and proceed to Step 2.3.4 (Step 3.3.5 of Algorithm 2); else we
proceed as the classical algorithm.

Correctness. The correctness of Algorithm 2 is immediate from the correctness
of the classical algorithm and from Proposition 1.

Time complexity. We now analyze the time complexity of Algorithm 2. Let
us denote by T (n, d1, d2, . . . , dk) the run time of the algorithm on graphs with n
states and priority functions p1, p2, . . . , pk with pi : S → [2di], for i = 1, 2, . . . , k.
Let d =

∑k
i=1 di. By Lemma 2, Step 2 takes nO(

√
n) ·O(d) time. For simplicity

we will drop the O(·) from O(d); the whole analysis can be easily carried out
with O(d). We now analyze the following cases.

1. If Step 2 succeeds, then at least one state is removed and we need to solve
a subgame with one state less (which takes time T (n− 1, d1, d2, . . . , dk)).
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2. If Step 2 fails, then any dominion for player 1 in G must have size at least√
n; hence the dominion Gj discovered at Step 3.5.1 must be of size at

least
√
n (as otherwise it would have been discovered in Step 2). Hence the

DisjParityWin call at Step 3.5.1 requires to solve a subgame of size at most
n −
√
n, and this requires time T (n −

√
n, d1, d2, . . . , dk). We now analyze

the loop in Step 3.3: we analyze the work for one priority function, and
then sum it up for all k priority functions. For a fixed priority function pi,
Step 3.3.2 is executed at most n times, and by Lemma 2, each time it requires
at most nO(

√
n) · d time. Hence the total work of Step 3.3.2 requires at most

n · nO(
√
n) · d = nO(

√
n) · d time. We now analyze Step 3.3.3: since 3.3.3 is

invoked upon failure of Step 3.3.2, the discovered set Hj \Wj (which is a
dominion) has at least size

√
n. Hence this step is executed

√
n times; the

first time on a game graph with n − 1 states and the range of the priority
function pi being [2di − 2], and each subsequent time, with at most n−

√
n

states and the range of pi being [2di − 2]. Hence the total work of the loop
for the priority function pi is

nO(
√
n)·d+T (n−1, d1, . . . , di−1, . . . , dk)+

√
n·T (n−

√
n, d1, . . . , di−1, . . . , dk).

Thus the total work when Step 2 fails is obtained by summing over i = 1 to
k, and then adding T (n −

√
n, d1, d2, . . . , dk) (the work after Step 3.5.1 on

the reduced game graph). Therefore we conclude that the total work when
Step 2 fails is

k∑

i=1

(

nO(
√
n) · d +T (n− 1, d1, d2, . . . , di − 1, . . . , dk) (1)

+
√
n · T (n−

√
n, d1, d2, . . . , di − 1, . . . , dk)

)

+ T (n−
√
n, d1, d2, . . . , dk).

Thus we obtain that T (n, d1, d2, . . . , dk) = nO(
√
n)·d+max{Term1,Term2}, where

Term1 = T (n−1, d1, d2, . . . , dk) (when Step 2 succeeds) and Term2 = Expression
(1) (when Step 2 fails). If T (n, d1, d2, . . . , dk) = nO(

√
n)·d+T (n−1, d1, d2, . . . , dk),

then easily we obtain that T (n, d1, d2, . . . , dk) = nO(
√
n) · d · n = nO(

√
n) · d. We

now analyze the recurrence T (n, d1, d2, . . . , dk) = nO(
√
n) ·d+Term2, where Term2

is the Expression (1). The following lemmas analyze the recurrence. Lemma 3
follows by induction.

Lemma 3. Consider the following recurrence: T (n, d1, d2, . . . , dk) is nO(
√
n) ·d+

(1) if n ≥ 2, and
(

d
d1,d2,...,dk

)
otherwise. Then T (n, d1, d2, . . . , dk) ≤ nO(

√
n) · k ·

d ·
(

d
d1,d2,...,dk

)
· t(n), where t(n) is 1 + t(n− 1) + (

√
n+ 1) · t(n−

√
n) if n ≥ 2,

and 1 otherwise.

We now show that the recurrence t(n) = 1 + t(n − 1) + (
√
n + 1) · t(n −

√
n)

satisfies the bound that t(n) = nO(
√
n). In [12] a similar recurrence was analyzed.

In [12] the recurrence t(n) = 1 + t(n− 1) + t(n−
√
n) was proved to satisfy the

bound nO(
√
n). In the next lemma we show that the bound of [12] can be proved

also for our recurrence.
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Lemma 4. Consider the following recurrence: t(n) is 1 + t(n− 1) + (
√
n+ 1) ·

t(n−
√
n) if n ≥ 2, and 1 otherwise. Then t(n) = nO(

√
n).

Proof. To bound t(n) we will analyze the following tree:
1. there is a root labeled n (this correspond to the term 1 of the recurrence);
2. if n > 1, then it has a left child labeled n− 1 and the sub-tree of t(n− 1) is

attached to this child (this correspond to the term t(n−1) of the recurrence);
3. if n > 1, then it has (�√n�+ 1) right children labeled n−�√n� and the sub-

tree of t (n− �
√
n�) is attached to each of the right children (this correspond

to the term (
√
n + 1) · t(n −

√
n) of the recurrence). For simplicity we will

drop the ceilings �·� and floors �·� below.
The number of nodes in the tree is a bound for our recurrence. We now bound
the number of the nodes in the tree. A node in the tree with no sub-tree is
referred as a leaf.
Length of a path. Any path in the tree from root down to a leaf has length at
most n (as the label decrease by at least 1 at every step).
Right children in a path. We now bound the number right children on a path
from the root down to a leaf. Consider a path from the root to a leaf and we
consider the number of right children possible in a segment of the path between
label k and k

2 . For every choice of a right children appear in this segment the

label goes down by at least
√

k
2 ; and hence the number of possible right children

in this segment is at most
k
2√
k
2

=

√
k

2
. Hence the number of right children

in a path from root to the leaf can be bounded by considering the bound on
segments: n to n

2 ; then n
2 to n

4 ; then n
4 to n

8 ; and so on. This yields the bound
√
n ·

(
∑∞
i=1

1√
2i

)

= O(
√
n).

The number of paths. We now bound the number of paths in the tree. The length
of a path is at most n; there are at most O(

√
n) right children; every choice of

a left child in the path is unique and for every choice of a right children there
are at most (

√
n+ 1) choices (since any node can have at most (

√
n + 1) right

children). Hence we obtain the following bound for the number distinct paths(
n

O(
√
n)

)

· (
√
n+ 1)O(

√
n) = nO(

√
n). Hence the desired result follows.

Combining the analysis of the recurrence and the correctness of Algorithm 2, we
obtain the following result.
Theorem 4 (Correctness and run time). Given a game graph G =
((S,E), (S1, S2)) and priority functions p1 : S → [2d1], p2 : S → [2d2], . . . , pk :
S → [2dk], the following assertions hold.
1. If W is the output of Algorithm 2, then W=W2(DisjParity(p1, p2, . . . , pk)),

and S \W=W1(ConjParity(p1, p2, . . . , pk)).
2. The run time of Algorithm 2 is nO(

√
n) ·O(k · d) ·

(
d

d1,d2,...,dk

)
, where n = |S|

and d =
∑k

i=1 di.
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Remark. In the special case of Rabin and Streett objectives with k pairs, the
run time of Algorithm 2 is nO(

√
n) ·O(k2) · k!. For comparison, the algorithm in

[16] works in time O(m ·nk+1 · k · k!). We conclude that the algorithm presented
above is of better complexity when the number of pairs is larger than

√
n.
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12. M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algo-

rithm for solving parity games. In SODA, pages 117–123, ACM/SIAM, 2006.
13. D.A. Martin. Borel determinacy. Annals of Mathematics, 65:363–371, 1975.
14. R. Milner. An algebraic definition of simulation between programs. In Second In-

ternational Joint Conference on Artificial Intelligence, pages 481–489, The British
Computer Society, 1971.

15. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
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Abstract. Tree automata with one memory have been introduced in
2001. They generalize both pushdown (word) automata and the tree
automata with constraints of equality between brothers of Bogaert and
Tison. Though it has a decidable emptiness problem, the main weakness
of this model is its lack of good closure properties.

We propose a generalization of the visibly pushdown automata of Alur
and Madhusudan to a family of tree recognizers which carry along their
(bottom-up) computation an auxiliary unbounded memory with a tree
structure (instead of a symbol stack). In other words, these recognizers,
called visibly Tree Automata with Memory (VTAM) define a subclass of
tree automata with one memory enjoying Boolean closure properties. We
show in particular that they can be determinized and the problems like
emptiness, inclusion and universality are decidable for VTAM. Moreover,
we propose an extension of VTAM whose transitions may be constrained
by structural equality and disequality tests between memories, and show
that this extension preserves the good closure and decidability properties.

1 Introduction

The control flow of programs with calls to functions can be abstracted as push-
down systems. This allows to reduce some program verification problems to
problems (e.g. model-checking) on pushdown automata. When it comes to func-
tional languages with continuation passing style, the stack must contain infor-
mation on continuations and has the structure of a dag (for jumps). Similarly, in
the context of asynchronous concurrent programming languages, for two concur-
rent threads the ordering of return is not determined (synchronized) and these
threads can not be stacked. In these cases, the control flow is better modeled
as a tree structure rather than a stack. That is why we are interested in tree
automata with one memory, which generalize the pushdown (tree) automata,
replacing the stack with a tree.

Tree automata with one memory are introduced in [4]. They compute bottom-
up on a tree, with an auxiliary memory carrying a tree. Along a computation,

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 168–182, 2007.
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at any node of the tree, the memory is updated incrementally from the memory
reached at the sons of the node. This update may consist in building a new tree
from the memories at the sons (this generalizes a push) or retrieving a subtree
of one of the memories at the sons (this generalizes a pop). In addition, such
automata may perform equality tests: a transition may be constrained to be
performed, only when the memories reached at some of the sons are identical. In
this way, tree automata with memory also generalize tree automata with equality
tests between brothers [3].

Automata with one memory have been introduced in the context of the ver-
ification of security protocols, where the messages exchanged are represented
as trees. In the context of (functional or concurrent) programs, the creation of
a thread, or a callcc, corresponds to a push, the termination of a thread or a
callcc corresponds to a pop. The emptiness problem for such automata is in
EXPTIME. However, the class of tree languages defined by such automata is
neither closed by intersection nor by complement. This is not surprising as they
are strictly more general than context free languages.

On the other hand, Alur and Madhusudan have introduced the notion of
visibility for pushdown automata [2], which is a relevant restriction in the context
of control flow analysis. With this restriction, determinization is possible and
actually the class of languages is closed under Boolean operations.

In this paper, we introduce the new formalism of Visibly Tree Automata
with Memory (VTAM), extending on one hand Visibly pushdown languages to
trees, including a tree structure instead of a stack (following former approaches
[10,15,8]). On the other hand, VTAM restrict tree automata with one memory,
imposing a visibility condition on the transitions: each symbol is assigned a
given type of action. When reading a symbol, the automaton can only perform
the assigned type of action: push or pop.

We first show in Section 3 that VTAM can be determinized, using a proof
similar to the proof of [2], and do have the good closure properties. The main
difficulty here is to understand what is a good notion of visibility for trees, with
memories instead of stacks.

In a second part of the paper (Section 4), we consider VTAM with constraints.
Our constraints here are recognizable relations; a transition can be fired only if
the memory contents of the sons of the current node satisfy such a relation.
We give then a general theorem, expressing conditions on such relations, which
ensure the decidability of emptiness. Such conditions are shown to be necessary
on one hand, and, on the other hand, we prove that they are satisfied by some
examples, including equality tests and structural equality tests. As an interme-
diate result, we show that, in case of equality tests or structural equality tests,
the language of memories that can be reached in a given state is always a regular
language. This is a generalization of the well-known result that the set of stack
contents in a pushdown automaton is always regular. To prove this, we observe
that the memories contents are recognized by a two-way alternating tree automa-
ton with constraints. Then we show, using a saturation strategy, that two-way
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alternating tree automata with (structural) equality constraints are not more
expressive than standard tree automata.

We consider VTAM with structural equality tests, since the determinization
and closure properties of Section 3 carry over this generalization, which we show
in Section 4.4. Finally, we give in Section 4.5 some examples of languages that
can be recognized by VTAM with structural equality and disequality tests: well-
balanced binary trees, red-black trees, powerlists...

Generalisations of pushdown automata to trees (both for input and stack) are
proposed in [10,15,8]. Our contributions are the generalization of the visibility
condition of [2] to such tree automata – our VTAM (without constraints) strictly
generalize the VP Languages of [2], and the addition of constraints on the stack
contents. The visibly tree automata of [1] use a word stack which is less general
than a tree structured memory but the comparison with VTAM is not easy as
they are alternating and compute top-down on infinite trees.

2 Preliminaries

Term algebra. A signature Σ is a finite set of function symbols with arity,
denoted by f , g. . . We write Σn the subset of function symbols of Σ of arity
n. Given an infinite set X of variables, the set of terms built over Σ and X is
denoted T (Σ,X ), and the subset of ground terms is denoted T (Σ). The set of
variables occurring in a term t ∈ T (Σ,X ) is denoted vars(t). A substitution σ
is a mapping from X to T (Σ,X ) such that {x|σ(x) �= x}, the support of σ,
is finite. The application of a substitution σ to a term t is written tσ. It is the
homomorphic extension of σ to T (Σ,X ). The positions Pos(t) in a term t are
sequences of positive integers (Λ, the empty sequence, is the root position). A
subterm of t at position p is written t|p, and the replacement in t of the subterm
at position p by u denoted t[u]p.

Rewriting. We assume standard definitions and notations for term rewrit-
ing [9]. A term rewriting system (TRS) over a signatureΣ is a finite set of rewrite
rules � → r, where � ∈ T (Σ,X ) and r ∈ T (Σ, vars(�)). A term t ∈ T (Σ,X )
rewrites to s by a TRS R (denoted t→R s) if there is a rewrite rule �→ r ∈ R,
a position p of t and a substitution σ such that t|p = �σ and s = t[rσ]p. The
transitive and reflexive closure of →R is denoted −−→∗R .

Tree Automata. Following definitions and notation of [5], we consider tree
automata which compute bottom-up (from leaves to root) on (finite) ground
terms in T (Σ). At each stage of computation on a tree t, a tree automaton reads
the function symbol f at the current position p in t and updates its current state,
according to f and to the respective states reached at the positions immediately
under p in t. Formally, a bottom-up tree automaton (TA) A on a signature Σ
as a tuple (Q,Qf , Δ) where Σ is the computation signature, Q is a finite set
of nullary state symbols, disjoint from Σ, Qf ⊆ Q is the subset of final states
and Δ is a set of rewrite rules of the form: f(q1, . . . , qn)→ q, where f ∈ Σ and
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q1, . . . , qn ∈ Q. A term t is accepted by A in state q iff t −−→∗
Δ

q, and the language
L(A, q) of A in state q is the set of ground terms accepted in q. The language
L(A) of A is

⋃
q∈Qf

L(A, q) and a set of ground terms is called regular if it is
the language of a TA.

3 Visibly Tree Automata with Memory

We propose in this section a subclass of the tree automata with one memory [4]
which is stable under Boolean operations and has a decidable emptiness problem.

3.1 Definition of VTAM

Tree automata have been extended [4] to carry an unbounded information stored
in a tree structure along the states in computations. This information is called
memory in [4] and will keep this terminology here, and call our recognizers tree
automata with memory (TAM). For consistency with the above formalisms, the
memory contents will be ground terms over a memory signature Γ .

Like for TA we consider bottom-up computations of TAM in trees; at each
stage of computation on a tree t, a TAM, like a TA, reads the function symbol
at the current position p in t and updates its current state, according to the
states reached immediately under p. Moreover, a configuration of TAM contains
not only a state but also a memory, which is a tree. The current memory is
updated according to the respective contents of memories reached in the nodes
immediately under p in t.

As above, we use term rewrite systems in order to define the transitions al-
lowed in a TAM. For this purpose, we add an argument to state symbols, which
will contain the memory. Hence, a configuration of TAM in state q and whose
memory contains is the ground term m ∈ T (Γ ) is represented by the term q(m).
We propose below a very general definition of TAM (it differs from the one of [4])
which shall be restricted later on.

Definition 1. A bottom-up tree automaton with memory (TAM) on a signature
Σ is a tuple (Γ,Q,Qf , Δ) where Γ is a memory signature, Q is a finite set of
unary state symbols, disjoint from Σ ∪ Γ , Qf ⊆ Q is the subset of final states
and Δ is a set of rewrite rules of the form f

(
q1(m1), . . . , qn(mn)

)
→ q(m) where

f ∈ Σn, q1, . . . , qn, q ∈ Q and m1, . . . ,mn,m ∈ T (Γ,X ).

The rules of Δ are also called transition rules. A term t is accepted by A in state
q ∈ Q and with memory m ∈ T (Γ ) iff t −−→∗

Δ
q(m), and the language L(A, q) and

memory language M(A, q) of A in state q are respectively defined by:

L(A, q) =
{
t

∣
∣ t −−→∗

Δ
q(m), m ∈ T (Γ )

}

M(A, q) =
{
m

∣
∣ t −−→∗

Δ
q(m), t ∈ T (Σ)

}
.

The language of A is the union of languages of A is its final states, denoted:
L(A) =

⋃
q∈Qf

L(A, q).
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PUSH f2
(
q1(y1), q2(y2)

) → q
(
h(y1, y2)

)

POP11 f3
(
q1(h(y11, y12)), q2(y2)

) → q(y11)
f3

(
q1(⊥), q2(y2)

) → q(⊥)
POP12 f4

(
q1(h(y11, y12)), q2(y2)

) → q(y12)
f4

(
q1(⊥), q2(y2)

) → q(⊥)
POP21 f5

(
q1(y1), q2(h(y21, y22))

) → q(y21)
f5

(
q1(y1), q2(⊥)

) → q(⊥)
POP22 f6

(
q1(y1), q2(h(y21, y22))

) → q(y22)
f6

(
q1(y1), q2(⊥)

) → q(⊥)
INT0 a → q(⊥)
INT1 f7

(
q1(y1), q2(y2)

) → q(y1)
INT2 f8

(
q1(y1), q2(y2)

) → q(y2)

where q1, . . . , qn ∈ Q, y1, y2 are distinct variables of X , h ∈ Γ2, a ∈ ΣINT0 , and every
fi is in the corresponding partition of Σ (f2 ∈ ΣPUSH, f3 ∈ ΣPOP11 , etc).

Fig. 1. VTAM transition categories

Visibility Condition. The above formalism is of course far too expressive. As
there are no restrictions on the operation performed on memory by the rewrite
rules, one can easily encode a Turing machine as a TAM. We shall now define a
decidable restriction called visibly tree automata with memory (VTAM).

First, we consider only three main families (later divided into subcategories) of
operations on memory. We assume below a computation step at some position
p of a term, where memories m1, . . . ,mn have been reached at the positions
immediately below p:

– PUSH: the new current memory m is build with a symbol h ∈ Γn pushed at
the top of memories reached: f

(
q1(m1), . . . , qn(mn)

)
→ q

(
h(m1, . . . ,mn)

)
.

According to the terminology of [2], this corresponds to a call move in a
program represented by an automaton.

– POP: the new current memory is a subterm of one of the the memories
reached: f

(
. . . , qi(g(m′1, . . . ,m

′
k)), . . .

)
→ q(m′j). This corresponds to a func-

tion’s return in a program.
– INT (internal): the new current memory is one of the memories reached:
f
(
q1(m1), . . . , qn(mn)

)
→ q(mi). This corresponds to an internal operation

(neither call nor return) in a function of a program.

Next, we adhere to the visibility condition of [2]. The idea behind this restric-
tion, which was already in [12], is that the symbol read (in a term in our case
and [1], in a word in the case of [2]) by an automaton corresponds to an instruc-
tion of a program, and hence belongs to one of the three above families (call,
return and internal). Indeed, the effect of the execution of a given instruction
on the current program state (a stack for [2] or a tree in our case) will always
be in the same family. In other words, in this context, the family of the memory
operations performed by a transition is completely determined by the function
symbol read. We assume from now on for the sake of simplicity that all the sym-
bols of Σ and Γ have either arity 0 or 2. This is not a real restriction, and the
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results of this paper can be extended straightforwardly to the case of function
symbols with other arity. The signature Σ is partitioned in eight subsets:

Σ = ΣPUSH �ΣPOP11 �ΣPOP12 �ΣPOP21 �ΣPOP22 �ΣINT0 �ΣINT1 �ΣINT2

The eight corresponding transition categories are defined formally in Figure 1.
In this figure, ⊥ is a special constant symbol in Γ , used to represent an empty
memory. Note that the other constant symbols of Γ are not relevant since they
can not be pushed or popped. Note that each POP rule has a variant which read
an empty memory.

Definition 2. A visibly tree automaton with memory (VTAM) on Σ is a TAM
(Γ,Q,Qf , Δ) such that every rule of Δ belongs to one of the above categories
PUSH, POP11, POP12, POP21, POP22, INT0, INT1, INT2.

A VTAM A is said complete if every term of T (Σ) belong to L(A, q) for at least
one state q ∈ Q. Every VTAM can be completed (with a polynomial overhead)
by the addition of a trash state. Hence, we shall consider from now on only
complete VTAM.

3.2 Determinism

A VTAM A = (Γ,Q,Qf , Δ) is said deterministic iff:

– for all a ∈ ΣINT0 there is at most one rule in Δ with left-member a,
– for all f ∈ ΣPUSH∪ΣINT1 ∪ΣINT2 , for all q1, q2 ∈ Q, there is at most one rule

in Δ with left-member f
(
q1(y1), q2(y2)

)
,

– for all f ∈ ΣPOP11 ∪ ΣPOP12 (resp. ΣPOP21 ∪ ΣPOP22), for all q1, q2 ∈
Q and all h ∈ Γ , there is at most one rule in Δ with left-member
f
(
q1(h(y11, y12)), q2(y2)

)
(resp. f

(
q1(y1), q2(h(y21, y22))

)
.

Theorem 1. For every VTAM A = (Γ,Q,Qf , Δ) there exists a deterministic
VTAM Adet = (Γ det , Qdet , Qdet

f , Δdet ) such that L(A) = L(Adet), where |Qdet |
and |Γ det | both are O

(
2|Q|

2)
.

Proof. We follow the technique of [2] for the determinization of VPA: we do
a subset construction and postpone the application (to the memory) of PUSH
rules, until a matching POP is met. The construction of [2] is extended in order
to handle the branching structure of the term read and of the memory.

With the visibility condition, for each symbol read, only one kind of memory
operation is possible. This permits a more uniform construction of the rules of
Adet for each symbol of Σ. As we shall see below, Adet wont need to keep track
of the contents of memory (of A) during its computation, it will only need to
memorize information on the reachability of states of A, following the path from
the position of the PUSH symbol which has pushed the top symbol of the current
memory (let us call it the last-memory-push-position) to the current position in
the term. We let :

Qdet := {0, 1} × P(Q)× P(Q2)
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Qdet
f is the subset of states whose second component contains a final state of

Qf . The first component is a flag indicating whether the memory is currently
empty (value 0) or not (value 1). The second component is the subset of states
of Q that A can reach at current position, and the third component is a binary
relation on Q which contains (q, q′) iff starting from a state q and memory m
at the last-memory-push-position, A can reach the current position in state q′,
and with the same memory m.

INT. For every f ∈ ΣINT1 , we have the following rules in Δdet :

f
(
〈b1, R1, S1〉(y1), 〈b2, R2, S2〉(y2)

)
→ 〈b1, R, S〉(y1)

where R =
{
q

∣
∣ ∃q1 ∈ R1, q2 ∈ R2, f

(
q1(y1), q2(y2)

)
→ q(y1) ∈ Δ

}
and S is

the update of S1 according to the INT1-transitions of Δ (when b1 = 1, the case
b1 = 0 is similar):

S :=
{

(q, q′)
∣
∣ ∃q1 ∈ Q, q2 ∈ R2, (q, q1) ∈ S1 and f

(
q1(y1), q2(y2)

)
→ q′(y1)∈Δ

}
.

The case f ∈ ΣINT2 is similar.
We consider memory symbols made of pairs of states and PUSH symbols:

Γ det :=
(
Qdet

)2 × (ΣPUSH)

PUSH. For every f ∈ ΣPUSH, we have the following rules in Δdet :

f
(
〈b1, R1, S1〉(y1), 〈b2, R2, S2〉(y2)

)
→ 〈1, R, IdQ〉(p(y1, y2))

where R =
{
q

∣
∣ ∃q1 ∈ R1, q2 ∈ R2, h ∈ Γ, f

(
q1(y1), q2(y2)

)
→ q

(
h(y1, y2)

)
∈ Δ

}

and IdQ is
{

(q, q)
∣
∣ q ∈ Q

}
is used to initialize the memorization of state reach-

ability from the position of the symbol f , and p :=
〈
〈b1, R1, S1〉, 〈b2, R2, S2〉, f

〉
.

Note that the two states reached just below the position of application of this
rule are pushed on the top of the memory. They will be used later in order to
update R and S when a matching POP symbol is read.

POP. For every f ∈ ΣPOP11 , we have the following rules in Δdet :

f
(
〈b1, R1, S1〉(h(y11, y12)), 〈b2, R2, S2〉(y2)

)
→ 〈b, R, S〉(y11)

where h = 〈Q1, Q2, g〉, with Q1 = 〈b′1, R′1, S′1〉 ∈ Qdet , Q2 = 〈b′2, R′2, S′2〉 ∈ Qdet .

R =
{

q

∣
∣
∣
∣
∃q′1 ∈ R′1, q′2 ∈ R′2, (q0, q1) ∈ S1, q2 ∈ R2, h ∈ Γ, g

(
q′1(y1), q′2(y2)

)
→

q0
(
h(y1, y2)

)
∈ Δ, f

(
q1(h(y11, y12)), q2(y2)

)
→ q(y11) ∈ Δ

}

S =
{

(q, q′)
∣
∣
∣
∣
∃q′1 ∈ S′1(q), q′2 ∈ R′2, (q0, q1) ∈ S1, q2 ∈ R2, h ∈ Γ, g

(
q′1(y1), q′2(y2)

)

→ q0
(
h(y1, y2)

)
∈ Δ, f

(
q1(h(y11, y12)), q2(y2)

)
→ q′(y11) ∈ Δ

}

When a POP symbol is read, the top symbol of the memory, which is popped,
contains the states reached just before the application of the matching PUSH. We
use this information in order to update 〈b1, R1, S1〉 and 〈b2, R2, S2〉 to 〈b, R, S〉.

The above constructions ensure the three invariants stated above, after the
definition of Qdet and corresponding to the three components of these states. It
follows that L(A) = L(Adet ). �
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3.3 Closure Properties

The tree automata with one memory of [4] are closed under union but not closed
under intersection and complement (even their version without constraints). The
visibility condition makes possible these closures for VTAM.

Theorem 2. The class of tree languages of VTAM is closed under Boolean op-
erations (union, intersection, complement).

Proof. (sketch, see [7] for the complete constructions). For the union of two
VTAM languages, we construct a VTAM whose memory signature, state set,
final state set and rules set are the union of the respective memory signatures,
state sets, final state sets and rules sets of the two given VTAM.

For the intersection, we construct a VTAM whose memory signature, state
set and final state set are the Cartesian product of the respective memory signa-
tures, state sets and final state sets of the two given VTAM. The rule set of the
intersection VTAM is obtained by ”product” of rules of the two given VTAM
with same function symbols. The product of rules means Cartesian products of
the respective states and memory symbols pushed or popped. Note that such an
operation is possible only because the visibility condition ensures that two rules
with the same function symbol in left-side will have the same form. Hence we
can synchronise memory operations on the same symbols.

For the complement, we use the construction of Theorem 1 and take the
complement of the final state set of the VTAM obtained. �

3.4 Decision Problems

Every VTAM is a particular case of tree automaton with one memory of [4].
Since the emptiness problem (whether the language accepted is empty or not) is
decidable for this latter class, it is also decidable for VTAM. In comparison, the
emptiness is decidable for nondeterministic visibly pushdown (top-down) tree
automata (N-VPTA) of [1] but the class of languages of infinite trees that they
define is not closed under complement. The alternating version of these automata
(VPTA, [1]) is closed under Boolean operations but has an undecidable emptiness
problem. We propose below a proof of decidability of emptiness which follows
the same lines as [4].

Theorem 3. The emptiness problem is decidable in EXPTIME for VTAM. The
universality and inclusion problem are decidable in 2-EXPTIME for VTAM.

Proof. Assume given a VTAM A = (Γ,Q,Qf , Δ). By definition, for each state
q ∈ Q, the language L(A, q) is empty iff the memory language M(A, q) is empty.
We show that each M(A, q) is recognized by an alternating two-way automaton,
hence is regular (see e.g. [5]). We can construct in exponential time a TA Aq
of size exponential in the size of A and accepting L(A, q). A proof of a more
general result will stated in Lemma 1 and can be found in [7].

As usual, a VTAM A is universal iff the language of its complement automaton
A is empty, and L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅. Since these operations
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require a determinization of a given VTAM first, these problems can be decided
in 2-EXPTIME for VTAM. �

4 Visibly Tree Automata with Memory and Constraints

In the late eighties, some models of tree recognizers obtained by adding equality
and disequality constraints in transitions of tree automata have been proposed
in order to solve problems with term rewrite systems or constraints systems
with non-linear patterns (terms with multiple occurrence of the same variable).
The tree automata of [3] for instance can perform equality and disequality test
between subterms of the term read located at brother positions.

In the case of tree automata with memory, we shall apply constraints to the
contents of the memory. Indeed, each step of a bottom-up computation starts
with two states and two memories (and ends with one state and one memory),
and therefore, it is possible to compare the contents of these two memories, with
respect to some binary relation. We state first the general definition of visibly
tree automata with constraints on memories, then give sufficient conditions for
the emptiness decidability and show some relevant examples which satisfy these
conditions. Finally, we study in Section 4.4 the particular case of VTAM with
structural equality constraints. They enjoy not only decision properties but also
good closure properties.

4.1 Definitions

Assume given a fixed equivalence relation R on T (Γ ). We consider now four new
categories for the symbols ofΣ: INTR1 , INTR2 , INT¬R1 , INT¬R2 , in addition to the eight
previous categories of page 173. The four new categories correspond to the the
constrained versions of the transition rules INT1 and INT2 presented in Figure 2.

We will not extend the rules PUSH and POP with constraints for some rea-
sons explained below. A ground term t rewrites to s by a constrained rule
f
(
q1(y1), q2(y2)

)
−−−−−→y1 c y2 r (where c is either R or ¬R) if there exists a posi-

tion p of t and a substitution σ such that t|p = �σ, y1σ c y2σ and s = t[rσ]p.
For example, if R is term equality, the transition is performed only when the

memory contents are identical.
Definition 3. A visibly tree automaton with memory and constraints
(VTAMR

¬R) on a signature Σ is a tuple (Γ,R,Q,Qf , Δ) where Γ , Q, Qf are de-
fined as for TAM, R is an equivalence relation on T (Γ ) and Δ is a set of rewrite
rules in one of the above categories: PUSH, POP11, POP12, POP21, POP22, INT0,
INT1, INT2, INTR1 , INTR2 , INT¬R1 , INT¬R2 .

INTR
1 f9

(
q1(y1), q2(y2)

) −−−−−→y1 R y2 q(y1)
INTR

2 f10
(
q1(y1), q2(y2)

) −−−−−→y1 R y2 q(y2)

INT¬R
1 f11

(
q1(y1), q2(y2)

) −−−−−−→y1 ¬R y2 q(y1)

INT¬R
2 f12

(
q1(y1), q2(y2)

) −−−−−−→y1 ¬R y2 q(y2)

Fig. 2. New transition categories for VTAMR
¬R
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We denote VTAMR the subclass of VTAMR
¬R with positive constraints only, i.e.

without transition rules in INT¬R1 or INT¬R2 . The acceptance of terms of T (Σ)
and languages of term and memories are defined and denoted as in Section 3.1.

The definition of deterministic VTAMR
¬R is based on the same conditions

as for VTAM for the function symbols in categories of PUSH0, PUSH, POP11,
. . . , POP22, INT1, INT2, and for the function symbols of INTR1 , INTR2 , INT¬R1 ,
INT¬R2 , we use the same conditions as for INT1, INT2: for all f ∈ ΣINTR

1
∪

ΣINTR
2
∪ΣINT¬R

1
∪ΣINT¬R

2
, for all q1, q2 ∈ Q, there is at most one rule in Δ with

left-member f
(
q1(y1), q2(y2)

)
.

4.2 Emptiness Decision

We propose here a generic theorem for emptiness decision. The idea of this
theorem is that under some condition on R, the transition rules with negative
constraints can be eliminated.

Theorem 4. Let R be an equivalence relation satisfying these two properties:

i. for all automaton A of VTAMR and for all state q of A, the memory lan-
guage M(A, q) is a regular tree language,

ii. the size of every equivalence class of R is bounded, and its elements can be
enumerated.

Then the emptiness problem is decidable for VTAMR
¬R.

Proof. Let A = (Γ,R,Q,Qf , Δ) be a VTAMR
¬R. We show in [7] that there exists

a VTAMR A+ = (Γ,R,Q+, Qf , Δ
+) such that Q ⊆ Q+, and for each q ∈ Q,

M(A+, q) = M(A, q). The proof is by induction on the number n of rules with
negative constraints (i.e. rules in categories INT¬R1 and INT¬R2 ) in Δ and uses
the bound on the size of equivalence classes, condition ii of the theorem.

It follows from the condition i. of the theorem that emptiness is decidable for
A, since by definition L(A, q) is empty iff M(A, q) is empty. �

We will see soon (Section 4.4) two examples of relations satisfying i. and ii.

4.3 Regular Tree Relations

We first consider the general case where the equivalence R is based on an ar-
bitrary regular binary relation on T (Γ ). By regular binary relation, we mean a
set of pairs of ground terms accepted by a tree automaton computing simulta-
neously in both terms of the pair. More formally, we use a coding of a pair of
terms of T (Σ) into a term of T

(
(Σ ∪{⊥})2

)
, where ⊥ is a new constant symbol

(not in Σ). This coding is defined recursively by:

⊗ : T (Σ) ∪ {⊥} × T (Σ) ∪ {⊥} → T
(
(Σ ∪ {⊥})2

)

for all a, b ∈ Σ0 ∪ {⊥}, a⊗ b := 〈a, b〉,
for all a ∈ Σ0 ∪⊥, f ∈ Σ2, t1, t2 ∈ T (Σ), f(t1, t2)⊗ a := 〈f, a〉(t1 ⊗⊥, t2 ⊗⊥)
a⊗ f(t1, t2) := 〈a, f〉(⊥⊗ t1,⊥⊗ t2),

f. a. f, g ∈ Σ2, s1, s2, t1, t2 ∈ T (Σ), f(s1, s2)⊗g(t1, t2) := 〈f, g〉(s1⊗ t1, s2⊗ t2).
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Then, a binary relation R ⊆ T (Σ) × T (Σ) is called regular iff the set {s ⊗ t
∣
∣

(s, t) ∈ R} is regular.
The class of VTAMR

¬R when R is a binary regular tree relation constitutes a
nice and uniform framework. Note however the condition ii. of Theorem 4 is not
always true in this case. Actually, it is too expressive.

Theorem 5. The emptiness problem is undecidable for VTAMR with some R
based on a regular binary relation.

Proof. We reduce the blank accepting problem for a deterministic Turing ma-
chine M. We encode configurations of M as ”right-combs” (binary trees) built
with the tape and state symbols of M, in ΣPUSH (hence binary) and a constant
symbol ε in ΣINT0 . Let R be the regular relation which accepts all the pairs of
configurations c⊗c′ such that c′ is a successor of c byM. A sequence of configura-
tions c0c1 . . . cn (with n ≥ 1) is encoded as a tree t = f(c0(f(c1, . . . f(cn−1, cn))),
where f is a binary symbol of ΣINTR

1
.

We construct a VTAMR A which accepts exactly the term-representations
t of computation sequences of M starting with the initial configuration c0 of
M and ending with is a final configuration cn with blank tape. Following the
type of the function symbols, the rules of A will push all the symbols read in
subterms of t corresponding to configurations and a transition applied at the top
of a subterm f(ci, f(ci+1, . . .)) will compare, with R, ci and ci+1 (the memory
contents in respectively the left and right branches) and store ci in the memory.
This way, A checks that successive configurations in t correspond to transitions
of M, hence that the language of A is not empty iff M accepts the initial
configuration c0. �

4.4 Syntactic and Structural Equality and Disequality Constraints

We present now two examples of relations satisfying the conditions of Theorem 4.
These results will be proved with the following crux Lemma.

Lemma 1. Let R be a regular binary relation defined by a TA whose state set is{
Ri

∣
∣ i = {1..n}

}
and such that ∀i, j∃k, l Ri(x, y)∧Rj(y, z)|=|Rk(x, y)∧Rl(x, z).

Let A = (Γ,R,Q,Qf , Δ) be a tree automaton with memory and constraints (not
necessarily visibly). Then for every q ∈ Q, M(A, q) is regular.

Proof. (Sketch, the complete proof can be found in [7]). We first observe that
M(A, q) is the interpretation of q in the least Herbrand model of a set of Horn
clauses computed from the rules Δ. We saturate this set of clauses by resolution
with an selection and eager splitting. This saturation terminates, and the set of
clauses corresponding to alternating automata transitions in the saturated set
recognizes the language M(A, q), which is therefore regular. �

We first apply Lemma 1 to the class VTAM=
�= where = denotes the equality

between ground terms made of memory symbols.

Corollary 1. The emptiness problem is decidable for VTAM=
�=.
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Lemma 1 applies also to another class VTAM≡�≡, where ≡ denotes structural term
equality, defined recursively as the smallest equivalence relation ground terms
such that:

– a ≡ b for all a, b of arity 0,
– f(s1, s2) ≡ g(t1, t2) if s1 ≡ t1 and s2 ≡ t2, for all f , g of arity 2.

Note that it is a regular relation.

Corollary 2. The emptiness problem is decidable for VTAM≡�≡.

A nice property of VTAM≡�≡ is that the construction for determinization of Sec-
tion 3.2 still works for this class.

Theorem 6. For every VTAM≡�≡ A = (Γ,≡, Q,Qf , Δ) there exists a determinis-
tic VTAM≡�≡ Adet = (Γ det ,≡, Qdet , Qdet

f , Δdet) such that L(A) = L(Adet ), where
|Qdet | and |Γ det | both are O

(
2|Q|

2)
.

Proof. We use the same construction as in the proof of Theorem 1, with a di-
rect extension of the construction for INT to INT≡ or INT �≡. The key property
for handling constraints is that the structure of memory (hence the result of
the structural tests) is independent from the non-deterministic choices of the
automaton. With the visibility condition it only depends on the term read. �

Theorem 7. The class of tree languages of VTAM≡�≡ is closed under Boolean
operations.

Proof. We use the same constructions as in Theorem 2 (VTAM) for union and in-
tersection. For the intersection, in the case of constrained rules we can safely keep
the constraints in product rules, thanks to the visibility condition (as the struc-
ture of memory only depends on the term read, see the proof of Theorem 6 ). For
instance, the product of the INT≡1 rules f9

(
q11(y1), q12(y2)

)
−−−−→y1≡y2 q1(y1) and

f9
(
q21(y1), q22(y2)

)
−−−−→y1≡y2 q1(y1), is f9

(
〈q11, q21〉(y1), 〈q12, q22〉(y2)

)
−−−−→y1≡y2

〈q1, q2〉(y1). For the complementation, we use Theorem 6. �

Corollary 3. The universality and inclusion problems are decidable for
VTAM≡�≡.

Proof. This is a consequence of Corollary 3 and Theorem 7. �

Constrained PUSH transitions. We did not consider a constrained extension
of the rules PUSH. The main reason is that symbols of a new category PUSH≡,
which test two memories for structural equality and then push a symbol on the
top of them, permit construct a constrained VTAM A whose memory language
M(A, q) is the set of well-balanced binary trees. This language is not regular,
whereas the base of our emptiness decision procedure is the result (Theorem 4,
Lemma 1) of regularity of these languages for the classes considered.
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4.5 Some VTAM≡
�≡ Languages

The regular tree languages and VPL are particular cases of VTAM languages.
In some cases, the tree automata with equality and disequality tests between
brothers [3] can be simulated by VTAM=

¬= which push all the symbol read up to
(dis)equality tests. We present in this final section some other relevant examples
of VTAM≡�≡ languages.

Well balanced binary trees. The VTAM≡�≡ with memory alphabet {f,⊥},
state set {q, qf}, unique final state qf , and whose rules follow accepts the (non-
regular) language of well balanced binary trees build with g (binary, in ΣINT≡

1
),

f (binary, in ΣPUSH) and a (constant in ΣINT0) with a g at the root position and
only f ’s and a’s below.

a→ q(⊥) f
(
q(y1), q(y2)

)
→ q

(
f(y1, y2)

)

g
(
q(y1), q(y2)

)
−−−−→y1≡y2 qf(y1)

Powerlists. A powerlist [14] is roughly a list of length 2n (for n ≥ 0) whose ele-
ments are stored in the leaves of a balanced binary tree. This data structure has
been used in [14] to specify data-parallel algorithms based on divide-and-conquer
strategy and recursion (e.g. Batcher’s merge sort and fast Fourier transform).

The following VTAM≡�≡ with memory alphabet {f,⊥}, state set {q, qf} and
unique final state qf and whose rules follow accepts the language of powerlists
of natural numbers presented in unary notation with the symbol s (binary, in
ΣINT2) and 0 (constant in ΣINT0). We use artificially a successor symbol s of
arity 2 instead of 1 as usual, because of the assumption that Σ = Σ0 � Σ2

in Section 3.1 (2 for instance is written s(0, s(0, 0))). The other symbols are f
(binary, in ΣPUSH), and g (binary, in ΣINT≡

1
), used for the root of powerlist only

(as above). The rules of the VTAM≡�≡ are the following:

0→ q0(⊥)
s(q0(y1), q0(y2))→ q0(y2)

f
(
q0(y1), q0(y2)

)
→ q

(
f(y1, y2)

)

f
(
q(y1), q(y2)

)
→ q

(
f(y1, y2)

)

g
(
q(y1), q(y2)

)
−−−−→y1≡y2 qf(y1)

Note that only the f symbol is pushed on the memory. Therefore, only the upper
structure of the powerlist is saved in the memory and tested at root position for
structural equality. This way, we ensure that this upper part is well balanced,
hence that the list has length 2n.

Some equational properties of algebraic specifications of powerlists have been
studied in the context of automatic induction theorem proving and sufficient
completeness [13]. Tree automata with constraints have been acknowledged as a
very powerful formalism in this context (see e.g. [6]). We therefore believe that
a characterisation of powerlist (and the complement language) as VTAM≡�≡ for
the automated verification of algorithms on this data structure.

Red-black trees. A red-black is a binary search tree following these properties:

1. every node is either red or black,
2. the root node is black,
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3. all the leaves are black,
4. if a node is red, then both its sons are black,
5. every path from the root to a leaf contains the same number of black nodes.

The four first properties are local and can be check with standard TA rules.
The fifth property make the language red-black trees not regular and we need
VTAM≡�≡ rules to recognize it. It can be checked by pushing all the black nodes
read, we use for this purpose a symbol black ∈ ΣPUSH. When a red node is read,
the number of black nodes in both its sons are check to be equal (by a test ≡ on
the corresponding memories) and only one corresponding memory is kept. This
is done with a symbol red ∈ ΣINT≡

1
. When a red node is read, the equality of

number of black nodes in its sons must also be tested, and a black must moreover
be pushed on the top of the memory kept. The structure test is done with an
auxiliary symbol aux ∈ ΣINT≡

1
, located just above the black symbol. It means

that the VTAM≡�≡ recognizes not exactly the red-black tree but a representation
with additional nodes. This can be considered as already satisfying in the context
of verification. In [11] a special class of tree automata is introduced and used
in a procedure for the verification of C programs which handle balanced tree
data structures, like red-black tree. Based on the above example, we think that,
following the same approach, VTAM≡�≡ can also be used for similar purposes.

5 Conclusion

Having a tree memory structure instead of a stack is sometimes more relevant
(even when the input functions symbols are only of arities 1 and 0). We have
shown how to extend the visibly pushdown languages to such memory structures,
keeping determinization and closure properties of VPL. Our main contribution is
then to extend this automaton model, constraining the transition rules with some
regular conditions, while keeping decidability results. The structural equality and
disequality tests appear to a be a good constraint class since we have then both
decidability of emptiness and Boolean closure properties.
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Abstract. The model checking problem for open finite-state systems
(called module checking) has been intensively studied in the literature
with respect to CTL and CTL∗. In this paper, we focus on module
checking with respect to the fully enriched µ-calculus and some of its
fragments. Fully enriched µ-calculus is the extension of the propositional
µ-calculus with inverse programs, graded modalities, and nominals. The
fragments we consider here are obtained by dropping at least one of
the additional constructs. For the full calculus, we show that module
checking is undecidable by using a reduction from the domino problem.
For its fragments, instead, we show that module checking is decidable
and ExpTime-complete. This result is obtained by using, for the upper
bound, a classical automata-theoretic approach via Forest Enriched Au-
tomata and, for the lower bound, a reduction from the module checking
problem for CTL, known to be ExpTime-hard.

1 Introduction

One of the most significant developments in the area of formal design verification
has been the discovery of the model-checking technique, which is particularly suit-
able for verifying ongoing behaviors of reactive systems ([CE81, QS81, VW86]).
In this verification method, (for a survey, see [CGP99]), the behavior of a system,
formally described by a mathematical model, is checked against a behavioral con-
straint specified by a formula in a suitable temporal logic, which enforces either a
linear model of time (formulas are interpreted over linear sequences correspond-
ing to single computations of the system) or a branching model of time (formulas
are interpreted over infinite trees, which describe all the possible computations of
the system).

In system modeling, we distinguish between closed and open systems [HP85].
For a closed system, the behavior is completely determined by the state of the
system. For an open system, the behavior is affected both by its internal state and
by the ongoing interaction with its environment. Thus, while in a closed system
all the nondeterministic choices are internal, and resolved by the system, in an
open system there are also external nondeterministic choices, which are resolved
by the environment [Hoa85]. Model checking algorithms used for the verification
of closed systems are not appropriate for the verification of open systems. In the
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latter case, we should check the system with respect to arbitrary environments
and should take into account uncertainty regarding the environment.

In [KVW01], Kupferman, Vardi, and Wolper extend model checking from
closed finite-state systems to open finite-state systems. In such a framework, the
open finite-state system is described by a labeled state-transition graph called
module whose set of states is partitioned into a set of system states (where the
system makes a transition) and a set of environment states (where the envi-
ronment makes a transition). The problem of model checking a module (called
module checking) has two inputs: a module M and a temporal formula ϕ. The
idea is that an open system should satisfy a specification ϕ no matter how the
environment behaves. Let us consider the unwinding of M into an infinite tree,
say TM . Checking whether TM satisfies ϕ, (formally, M |= ϕ) is the usual model-
checking problem [CE81, QS81]. On the other hand, for an open system, TM
describes the interaction of the system with a maximal environment, i.e., an en-
vironment that enables all the external nondeterministic choices. In order to take
into account all the possible behaviors of the environment, we have to consider
all the trees T obtained from TM by pruning subtrees whose root is a successor
of an environment state (pruning these subtrees correspond to disable possible
environment choices). Therefore, a module M satisfies ϕ (formally, M |=r ϕ,
where r stands for “reactively”) if all these trees T satisfy ϕ. The set of all the
trees derived from TM by a legal pruning is denoted by exec(M).

In [KVW01], it has been showed that model checking for open finite-state
systems is ExpTime-complete for specification in CTL and 2ExpTime-complete
for specification in CTL∗. Moreover, the program complexity, i.e., the complexity
of the problem assuming the formula to be fixed, is Ptime-complete. Recently,
module checking has been also extended to infinite–state systems, by considering
open pushdown systems as models [BMP05]. It has been showed that in this
framework module checking is 2ExpTime-complete for specification in CTL and
3ExpTime-complete for specification in CTL∗.

The μ-calculus is a propositional modal logic augmented with least and great-
est fixpoint operators [Koz83]. It is often used as a target formalism for embed-
ding temporal and modal logics with the goal of transferring computational
and model theoretic properties such as the ExpTime upper complexity bound
(see [BS06] for a survey). Fully enriched μ-calculus is the extension of the
propositional μ-calculus with inverse programs, graded modalities, and nominals.
Intuitively, inverse programs allow to travel backwards along accessibility rela-
tions [Var98], nominals are propositional variables interpreted as singleton sets
[SV01], and graded modalities enable statements about the number of succes-
sors and predecessors of a state [KSV02]. In [BP04], Bonatti and Peron showed
that satisfiability is undecidable in the fully enriched μ-calculus. On the other
hand, the satisfiability problem for interesting fragments of the fully enriched μ-
calculus has been showed to be decidable and ExpTime-complete. In particular,
it has been showed for the fragments of the fully enriched μ-calculus obtained by
dropping at least one of graded modalities (fully hybrid μ-calculus)[SV01], nom-
inals (full graded μ-calculus) [BLMV06], and inverse programs (hybrid graded



Enriched µ-Calculi Module Checking 185

Inverse progr. Graded mod. Nominals Complexity

fully enriched µ-calculus x x x undecidable
full graded µ-calculus x x ExpTime
full hybrid µ-calculus x x ExpTime
hybrid graded µ-calculus x x ExpTime

Fig. 1. Enriched µ-calculi and known results

μ-calculus)[BLMV06]. These enriched μ-calculi are shown in Fig. 1 together
with the complexity of their satisfiability problem.

The above decidability results are based on an automata-theoretic approach
via fully enriched automata (FEAs), which run on infinite forests and use a
parity acceptance condition. Intuitively, these automata generalize alternating
automata on infinite trees in a similar way as the fully enriched μ-calculus ex-
tends the standard μ-calculus: FEAs can move up to a node’s predecessor (by
analogy with inverse programs), move down to at least n or all but n successors
(by analogy with graded modalities), and jump directly to the roots of the input
forest (which are the analogues of nominals). The decidability results follow from
the fact that all the above fragments enjoy the forest model property (while some
of them do not enjoy neither the tree model property nor the finite model prop-
erty), and from the fact that the emptiness problem for fully enriched automata
is decidable and ExpTime-complete. Observe that decidability of the emptiness
problem for FEAs does not contradict the undecidability of the fully enriched
μ-calculus: the latter does not enjoy a forest model property [BP04], and hence
satisfiability cannot be decided using forest-based FEAs.

In this paper, we extend the module checking problem for finite-state systems
to the fully enriched μ-calculus and we show that this problem is undecidable.
To gain this result, we use a reduction from the domino problem [Ber66], known
to be undecidable, by extending an idea due to Bonatti and Peron in [BP04].

Moreover, we consider the problem of module checking for the fragments of the
full calculus as listed in Fig. 1. That is, we consider the module checking problem
whit respect to formulas of the fully hybrid, full graded, and hybrid graded μ-
calculus. We show that in all the above frameworks, the module checking problem
is decidable and ExpTime-complete. For the upper bound, we use an automata-
theoretic approach via FEA. In more details, given a model M and a formula ϕ,
we first build a Büchi automaton AM , accepting exec(M). In particular, since
M requires to be unwound in a forest rather then a tree (since all the fragments
we consider enjoy the forest model property, while those including nominals do
not enjoy the tree model property), the set exec(M) is a set of forests, and thus,
AM is a Büchi automaton running on forests (BFA, for short). Then, accordingly
to [SV01] and [BLMV06], we build a FEA A¬ϕ accepting all models of ¬ϕ, with
the intent to check that no models of ¬ϕ are in exec(M). Thus, we check that
M |=r ϕ by checking whether L(AM ) ∩ L(A¬ϕ) is empty. The results follow
from the fact that BFAs are a particular case of FEAs, which are closed under
intersection and have the emptiness problem solvable in ExpTime [BLMV06].
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We also show a lower bound matching the obtained upper bound by using a
reduction from the module checking for CTL, known to be ExpTime-hard.

2 Preliminaries

Labeled Forests. For a finite set X , we denote the set of finite words over X
by X∗, the empty word by ε, and with X+ we denote X∗ \ {ε}. Given a word
w in X∗ and a symbol x of X , we use w · x to denote the word wx. Let IN be
the set of positive integers. For n ∈ IN, let N be denote the set {1, 2, . . . , n}.
A forest is a set F ⊆ N

+ such that if x · c ∈ F where x ∈ N
+ and c ∈ N,

then also x ∈ F . The elements of F are called nodes, and the strings consisting
of a single natural number are the roots of F . For each root r ∈ F , the set
T = {r · x | x ∈ N

∗ and r · x ∈ F} is a tree of F (the tree rooted in r). For
every x ∈ F , the nodes x · c ∈ F where c ∈ N are the successors of x, denoted
children(x), and x is their predecessor. The number of successors of a node x is
called the branching degree of x, and is denoted by bd(x). The degree of a forest
is the maximum of the degrees of a node in the forest and the number of roots.

Let F ⊆ N
+ be a forest and x a node in F . As a convention, we take x · ε = x,

(x · c) · −1 = x, and n · −1 as undefined, for n ∈ N. We call x a leaf if it has
no successors. A path π in F is a word π = a1a2 . . . of F such that a1 is a
root of F and for every ai ∈ π, either ai is a leaf (i.e., π ends in ai) or ai is a
predecessor of ai+1. Given two alphabets Σ1 and Σ2, a (Σ1, Σ2)-labeled forest
is a triple 〈F, V,E〉, where F is a forest, V : F → Σ1 maps each node of F to
a letter in Σ1, and E : F × F → Σ2 is a partial function that maps each pair
(x, y), with y ∈ children(x), to a letter in Σ2. As a particular case, we consider
a forest without labels on edges as a Σ1-labeled forest 〈F, V 〉, and a tree as a
forest containing exactly one tree.

A quasi-forest is a forest where each node may also have roots as successors.
Thus, for each node x of a quasi-forest F ⊆ N

+, we denote with successor(x)
the successors of x and children(x) = successor(x)\N. All the other definitions
regarding forests easily extend to quasi-forest. Notice that in a quasi-forest, a
root can also have several predecessors, while every other node has always a
unique one. Clearly, a quasi-forest can be always transformed in a forest by
removing root successors.

Enriched Automata. For a given set Y , let B+(Y ) be the set of positive
Boolean formulas over Y (i.e., Boolean formulas built from elements in Y using
∧ and ∨), where we also allow the formulas true and false and ∧ has precedence
over ∨. For a set X ⊆ Y and a formula θ ∈ B+(Y ), we say that X satisfies θ
iff assigning true to elements in X and assigning false to elements in Y \ X
makes θ true. For b > 0, let 〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉}, [[b]] = {[0], [1], . . . , [b]},
and Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε, 〈root〉, [root ]}.

A fully enriched automaton is an automaton in which the transition function
δ maps a state q and a letter σ to a formula in B+(Db×Q). Intuitively, an atom
(〈n〉, q) (resp., ([n], q)) means that the automaton sends copies in state q to n+1
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(resp., all but n) different successors of the current node, (ε, q) means that the
automaton sends a copy (in state q) to the current node, (−1, q) means that the
automaton sends a copy to the predecessor of the current node, and (〈root〉, q)
and ([root ], q) mean that the automaton sends a copy to some, respectively all
of the roots of the forest. When, for instance, the automaton is in state q, reads
a node x, and δ(q, V (x)) = (−1, q1) ∧ ((〈root〉, q2) ∨ ([root ], q3)), it sends a copy
in state q1 to the predecessor and either sends a copy in state q2 to one of the
roots or a copy in state q3 to all roots.

Formally, a fully enriched automaton (FEA, for short) is a tuple A = 〈Σ, b,
Q, δ, Q0, F〉, where Σ is the input alphabet, b > 0 is a counting bound, Q is a
finite set of states, δ : Q × Σ → B+(Db × Q) is a transition function, Q0 ⊆ Q
is a set of initial states, and F is the acceptance condition. A run of A on an
input Σ-labeled forest 〈F, V 〉 is a tree 〈Tr, r〉 in which each node is labeled by
an element of F ×Q. Intuitively, a node in Tr labeled by (x, q) describes a copy
of the automaton in state q that reads the node x of F . Runs start in the initial
state and satisfy the transition relation. Thus, a run 〈Tr, r〉 with root z has to
satisfy the following: (i) r(z) = (c, q0) for some root c of F and q0 ∈ Q0 (ii) for
all y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ, there is a (possibly empty) set
S ⊆ Db ×Q, such that S satisfies θ, and for all (d, s) ∈ S, the following hold:

– If d ∈ {−1, ε}, then x · d is defined and there is j ∈ N such that y · j ∈ Tr
and r(y · j) = (x · d, s);

– If d = 〈n〉, then there are distinct i1, . . . , in+1 ∈ N such that for all 1 ≤ j ≤
n+ 1, there is j′ ∈ N such that y · j′ ∈ Tr, x · ij ∈ F , and r(y · j′) = (x · ij , s);

– If d = [n], then there are distinct i1 . . . , ibd(x)−n ∈ N such that for all 1 ≤ j ≤
bd(x)−n, there is j′ ∈ N such that y·j′ ∈ Tr, x·ij ∈ F , and r(y·j′) = (x·ij , s);

– If d = 〈root〉, then for some root c ∈ F and some j ∈ N such that y · j ∈ Tr,
it holds that r(y · j) = (c, s);

– If d = [root ], then for all roots c ∈ F there exists j ∈ N such that y · j ∈ Tr
and r(y · j) = (c, s).

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condi-
tion. We consider here the parity acceptance condition, where F = {F1, . . . , Fk}
is such that F1 ⊆ . . . ⊆ Fk = Q. The number k of sets in F is called the index of
the automaton. Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let Inf (π) ⊆ Q be
such that q ∈ Inf (π) iff there are infinitely many y ∈ π for which r(y) ∈ F ×{q}.
A path π satisfies a parity acceptance condition F = {F1, . . . , Fk} iff there is an
even i for which Inf (π)∩Fi �= ∅ and Inf (π)∩Fi−1 = ∅. An automaton accepts a
forest iff there exists an accepting run of the automaton on the forest. We denote
by L(A) the set of all Σ-labeled forests that A accepts. The emptiness problem
for FEAs is to decide, given a FEA A, whether L(A) = ∅. In the following
theorem we recall the exact complexity of this decision problem.

Theorem 1. [BLMV06] The nonemptiness problem for a fully enriched au-
tomaton A = 〈Σ, b,Q, δ,Q0,F〉 can be solved in time linear in the size of Σ
and b, and exponential in the index of the automaton and number of states.

The following results on FEAs will be useful in the rest of the paper.
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Lemma 1. [BLMV06] Given two FEAs A1 and A2, there exists a FEA A such
that L(A) = L(A1) ∩ L(A2) and whose size is linear in the size of A1 and A2.

As a particular case of FEA, we consider nondeterministic Büchi Automata
running on forests (BFA, for short). Formally, a BFA is a tuple A = 〈Σ, D,
Q, δ, Q0, F〉, where Σ, Q, and Q0 are defined as in FEA, D is a finite set
of branching degrees, F ⊆ Q is a Büchi acceptance condition, and δ : Q ×
Σ × D2 → 2Q

∗×(Q×Root)∗ is the transition relation satisfying δ(q, σ, d1, d2) ∈
2Q

d1×(Q×Root)d2 , for every q ∈ Q, σ ∈ Σ and d1, d2 ∈ D.
A run of A on an input Σ-labeled forest 〈F, V 〉 of branching degree D is a

tree 〈Tr, r〉 in which each node is labeled by an element of F × Q. Formally,
〈Tr, r〉 is a run if r(z) = (Q0, z), for some root z of F and q0 ∈ Q0, and for all
y ∈ Tr labeled with (q, x), having d successors where d2 are roots successors and
d1 are the remaining ones, we have that r(y · i) = 〈qi, x · i〉 for all 1 ≤ i ≤ d1,
r(y · (d1 + i)) = 〈qd1+i, xi〉 for all 1 ≤ i ≤ d2 and 〈〈q1, . . . , qd1〉, 〈r(y · (d1 +
1)), . . . , r(y ·d)〉〉 ∈ δ(q, V (x), d1, d2). A run 〈F, V 〉 of a BFA is accepting if for all
paths π of Tr, we have that Inf(π)∩F �= ∅. Notice that F can be also expressed
as the particular parity condition {∅,F}.

3 Fully Enriched μ-Calculus

Let AP , Var , Prog , and Nom be finite and pairwise disjoint sets of atomic
propositions, propositional variables, atomic programs, and nominals. A program
is an atomic program a or its converse a−. The set of formulas of the fully
enriched μ-calculus is the smallest set such that (i) true and false are formulas;
(ii) p and ¬p, for p ∈ AP ∪ Nom , are formulas; (iii) x ∈ Var is a formula; (iv)
if ϕ1 and ϕ2 are formulas, α is a program, n is a non-negative integer, and y
is a propositional variable, then the following are also formulas: ϕ1 ∨ ϕ2, ϕ1 ∧
ϕ2, 〈n, α〉ϕ1, [n, α]ϕ1, μy.ϕ1(y), and νy.ϕ1(y).

Observe that we use positive normal form, i.e., negation is applied only to
atomic propositions. We call μ and ν fixpoint operators and use λ to denote a
fixpoint operator μ or ν. A propositional variable y occurs free in a formula if it
is not in the scope of a fixpoint operator, and bound otherwise. A sentence is a
formula that contains no free variables. We refer often to the graded modalities
〈n, α〉ϕ1 and [n, α]ϕ1 as atleast formulas and allbut formulas and assume that
the integers in these operators are given in binary coding: the contribution of n
to the length of the formulas 〈n, α〉ϕ and [n, α]ϕ is �logn� rather than n. We
refer to fragments of the fully enriched μ-calculus using the names from Fig. 1.
Hence, we say that a formula ϕ of the fully enriched μ-calculus is also a formula
of the hybrid graded, full hybrid, or full graded μ-calculus if ϕ does not have
inverse programs, graded modalities, or nominals, respectively. If at least one
of the above holds, we also say that ϕ is an enriched μ-calculus formula. To
avoid confusion, we observe that enriched formulas are also formulas of the full
calculus, while the converse is not always true. We recall that enriched formulas
enjoy the forest model property (as showed in [BLMV06] and [SV01]), while fully
enriched formulas does not [BP04].
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The semantics of the fully enriched μ-calculus is defined with respect to a
Kripke structure, i.e., a tuple K = 〈W,W0, R, L〉 where W is a non-empty set
of states, W0 ⊆ W is the set of initial states, R : Prog → 2W×W is a total
function (i.e., for each v ∈ W there is a program a ∈ Prog and a node w such
that (v, w) ∈ R(a)) that assigns to each atomic program a transition relation
over W , and L : AP ∪ Nom → 2W is a labeling function that assigns to each
atomic proposition and nominal a set of states such that the sets assigned to
nominals are singletons and subsets of W0. To deal with inverse programs, we
extend R as follows: for each a ∈ Prog , set R(a−) = {(v, u) : (u, v) ∈ R(a)}.
If (w,w′) ∈ R(α), we say that w′ is an α-successor of w. Informally, an atleast
formula 〈n, α〉ϕ holds at a state w of a Kripke structure K if ϕ holds at least
in n+ 1 α-successors of w. Dually, the allbut formula [n, α]ϕ holds in a state w
of a Kripke structure K if ϕ holds in all but at most n α-successors of w. Note
that ¬〈n, α〉ϕ is equivalent to [n, α]¬ϕ, and that the modalities 〈α〉ϕ and [α]ϕ
of the standard μ-calculus can be expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure
K = 〈W,W0, R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V :
{y1, . . . , yn} → 2W is an assignment of subsets of W to the variables y1, . . . , yn.
For a valuation V , a variable y, and a set W ′ ⊆ W , we denote by V [y ← W ′]
the valuation obtained from V by assigning W ′ to y. A formula ϕ with free
variables among y1, . . . , yn is interpreted over the structure K as a mapping ϕK

from valuations to 2W , i.e., ϕK(V) denotes the set of points that satisfy ϕ under
valuation V . The mapping ϕK is defined inductively as follows:

– trueK(V) = W and falseK(V) = ∅;
– for p ∈ AP ∪ Nom, we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
– for y ∈ Var , we have yK(V) = V(y);
– (ϕ1 ∧ ϕ2)K(V) = ϕK1 (V) ∩ ϕK2 (V) and (ϕ1 ∨ ϕ2)K(V) = ϕK1 (V) ∪ ϕK2 (V);
– (〈n, α〉ϕ)K (V)={w : |{w′ ∈W : (w,w′) ∈ R(α) and w′∈ϕK(V)}| ≥ n+ 1};
– ([n, α]ϕ)K(V) = {w : |{w′ ∈ W : (w,w′) ∈ R(α) and w′ �∈ ϕK(V)}| ≤ n};
– (μy.ϕ(y))k(V) =

⋂
{W ′ ⊆W : ϕK([y ←W ′]) ⊆W ′};

– (νy.ϕ(y))k(V) =
⋃
{W ′ ⊆W : W ′ ⊆ ϕK([y ←W ′])}.

Notice that α used in the previous graded modalities is a program, i.e., α can
be either an atomic program or its converse. Also, notice that no valuation is
required for a sentence. Let K = 〈W,W0, R, L〉 be a Kripke structure and ϕ a
sentence. For a state w ∈W , we say that K satisfies ϕ at w, denoted K,w |= ϕ,
if w ∈ ϕK . K is a model of ϕ if there is a w ∈ W0 such that K,w |= ϕ. In what
follows, a formula ϕ counts up to b if the maximal integer in atleast and allbut
restrictions used in ϕ is b− 1.

Given a formula ϕ of the enriched μ-calculus, accordingly to the forest model
property, we can define a FEA accepting all forest models of ϕ. Before giving
this result, there is a technical difficulty to be overcome: ϕ has quasi-forests
as models, with labels on both edges and nodes, while FEAs can only accept
forests with labels on nodes. This problem can be dealt in the following way.
First, we move the label of each edge to the target node of the edge. For this
purpose, we introduce a new propositional symbol pα for each program α. Thus,
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for each quasi-forest model 〈F, V,E〉, we consider the corresponding quasi-forest
〈F, V ′〉 obtained by removing labeling on the edges and using as labeling of nodes
the extended labeling function V ′(w) = V (w) ∪ {pα | E(v, w) = α}. Then, to
solve the problem of edges to the roots in quasi-forests models, we introduce in
node labels new propositional symbols ↑αo (not occurring in the input formula)
that represent an α-labeled edge from the current node to the (unique) root
node labeled by nominal o. We call the new labeling function V ∗, and with
〈F, V ∗〉 we denote the forest encoding of the quasi-forest model 〈F, V,E〉. A
forest 〈F, V ∗〉 can also be considered as a particular Kripke structure by letting
the total property holding in 〈F, V ∗〉 if all leaves have a propositional symbol ↑αo
in their labels. Now we can give the following result.

Lemma 2. [SV01, BLMV06] Given a sentence ϕ of the enriched μ-calculus
that has � atleast subsentences, counts up to b, and contains k nominals, we
can construct a FEA Aϕ such that it accepts exactly the forest encodings of the
quasi-forest models of ϕ having degree at most max{k + 1, �(b + 1)}, and such
that it has O(|ϕ|2) states, index |ϕ|, and counting bound b.

4 Enriched μ-Calculus Module Checking

In this paper we consider open systems, i.e., systems that interact with their
environment and whose behavior depends on this interaction. The (global) be-
havior of such a system is described by a module M = 〈Ws,We,W0, R, L〉, which
is a Kripke structure where the set of states W = Ws ∪We is partitioned in a
set of system states Ws and a set of environment states We.

Given a module M , we assume that its states are ordered and the number of
successors of each state w, denoted by bd(w), is finite, and W is considered to be
finite. For each state w ∈ W , we denote by succ(w) the ordered tuple (possibly
empty) of w’s successors. When the module M is in a system state ws, then all
the states in succ(ws) are possible next states. On the other hand, when M is
in an environment state we, then the possible next states (that are in succ(we))
depend on the current environment. Since the behavior of the environment is
not predictable, we have to consider all the possible sub-tuples of succ(we). The
only constraint, since we consider environments that cannot block the system,
is that not all the transitions from we are disabled.

The set of all (maximal) computations of M starting from the initial states W0

is described by a (W,Prog)-labeled quasi-forest 〈FM , VM , EM 〉, called computa-
tion quasi-forest, which is obtained by unwinding M in the usual way. The prob-
lem of deciding, for a given branching-time formula ϕ over AP ∪Nom, whether
〈FM , L ◦VM , EM 〉 satisfies ϕ, denoted M |= ϕ, is the usual model-checking prob-
lem [CE81, QS81]. On the other hand, for an open system, 〈FM , VM , EM 〉 cor-
responds to a very specific environment, i.e., a maximal environment that never
restricts the set of its next states. Therefore, when we examine a branching-time
specification ϕ w.r.t. a module M , ϕ should hold not only in 〈FM , VM , EM 〉,
but in all the quasi forests obtained by pruning from 〈FM , VM , EM 〉 subtrees
whose root is a child (successor) of a node corresponding to an environment
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state, as well as inhibiting some of its jumps to roots, if there are any. The set
of these quasi forests is denoted by exec(M), and is formally defined as follows.
〈F, V,E〉 ∈ exec(M) iff for each wi ∈ W0, we have V (i) = wi, and the following
holds:

– For x ∈ F with V (x) = w ∈ Ws, succ(w) = 〈w1, . . . , wn, wn+1, . . . , wn+m〉,
and succ(w) ∩W0 = 〈wn+1, . . . , wn+m〉, it holds that
• children(x) = {x · 1, . . . , x · n} and for 1 ≤ i ≤ n, V (x · i) = wi, and
E(x, x · i) = α if (w,wi) ∈ R(α);
• for 1 ≤ i ≤ m, let xi ∈ N such that V (xi) = wn+i, it holds that
E(x, xi) = α if (w,wn+i) ∈ R(α);

– For x ∈ F with V (x) = w ∈ We it holds that there exists a sub-tuple
S = 〈wi1 , . . . , wip , wip+1 , . . . , wip+q〉 of succ(w) with p + q ≥ 1, S ∩W0 =
〈wip+1 , . . . , wip+q〉 and such that
• children(x) = {x · 1, . . . , x · p} and for 1 ≤ j ≤ p, V (x · j) = wij , and
E(x, x · j) = α if (w,wij ) ∈ R(α);
• for 1 ≤ j ≤ q, let xj ∈ N such that V (xj) = wip+j , it holds that
E(x, xj) = α if (w,wip+j ) ∈ R(α);

Intuitively, a quasi-forest in exec(M) corresponds to a different behavior of the
environment. In the following, we consider quasi-forests in exec(M) as (2AP∪Nom,
Prog)-labeled quasi-forests, i.e., taking the label of a node x to be L(V (x)).

For a module M and a formula ϕ of the enriched μ-calculus we say that
M satisfies ϕ, denoted M |=r ϕ, if all the quasi forests in exec(M) satisfy ϕ.
The problem of deciding whether M satisfies ϕ is called module checking, and
extends to forests the analogously problem defined in [KVW01] regarding trees.
Note that M |=r ϕ implies M |= ϕ, but the converse in general does not hold.
Also, note that M �|=r ϕ is not equivalent to M |=r ¬ϕ, since M �|=r ϕ just states
that there is some quasi forest in exec(M) satisfying ¬ϕ.

5 Deciding Enriched μ-Calculus Module Checking

In this section, we solve the module checking problem for the enriched μ-calculus.
In particular, we show that this problem is decidable and ExpTime-complete.
For the upper bound, we give an algorithm based on an automata-theoretic
approach, by extending to forests and idea of [KVW01]. For the lower bound,
we give a reduction from the module checking problem for CTL, known to be
ExpTime-hard. We start with the upper bound.

Let M be a module and ϕ an enriched μ-calculus formula. We decide the
module-checking problem for M against ϕ by building a FEA AM×¬ϕ as the
intersection of two automata. Essentially, the first automaton, denoted by AM ,
is a Büchi automaton that accepts forests encoding of labeled quasi-forests of
exec(M), and the second automaton is a FEA that accepts all the forests encod-
ing of labeled quasi-forests that do not satisfy ϕ. Thus, M |=r ϕ iff L(AM×¬ϕ)
is empty.
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The construction of AM proposed here extends that given in [KVW01] for
solving the module checking problem with respect to CTL and CTL∗. The ex-
tension concerns the handling of forest models instead of trees and formulas
of the enriched μ-calculus. Before starting, there are few technical difficulties
to be overcome. First, we notice that exec(M) contains quasi-forests, with la-
bels on both edges and nodes, while Büchi automata can only accept forests
with labels on nodes. This problem can be dealt as we did in Section 3 by
moving the label of each edge to the target node of the edge (formally us-
ing a new propositional symbol pα, for each program α) and by substituting
edges to roots with new propositional symbols ↑αo (which represent an α-labeled
edge from the current node to the unique root node labeled by nominal o).
Let AP ∗ = AP ∪ {pα | α ∈ Prog} ∪ {↑αo | α ∈ Prog and o ∈ Nom}, we
denote with 〈F, V ∗〉 the 2AP

∗∪Nom-labeled forest encoding of a quasi-forest
〈F, V,E〉 ∈ exec(M), obtained using the above transformations.

Another technical difficulty to handle is relate to the fact that quasi-forests
of exec(M) (and thus their encoding) may not share the same structure, since
they are obtained by pruning some subtrees from the computation quasi-forest
〈FM , VM , EM 〉 of M . Let 〈FM , V ∗M 〉 the computation forest of M obtained from
〈FM , VM , EM 〉 using the above encoding. By extending an idea of [KVW01], we
solve the technical problem by considering each forest 〈F, V ∗〉, encoding of a
quasi-forest of exec(M), as a 2AP

∗∪Nom ∪ {⊥}-labeled forest 〈FM , V ∗∗〉 (where
⊥ is a fresh proposition name not belonging to AP ∪Nom) such that for each
node x ∈ FM , if x ∈ F then V ∗∗(x) = V ∗(x), otherwise V ∗∗(x) = {⊥}. Thus,
we label each node pruned in the 〈FM , V ∗M 〉 with {⊥} and recursively, we label
with {⊥} its subtrees. In this way, all forests encoding quasi-forests of exec(M)
have the same structure of 〈FM , V ∗M 〉, and they differ only in their labeling.
Accordingly we can think of an environment as a strategy for placing {⊥} in
〈FM , V ∗∗〉. Moreover, the environment can also disable jumps to roots. This
is performed by removing from enabled environment nodes some of ↑αo labels.
Notice that since we consider environments that do not block the system, each
node associated with an environment state has at least one successor not labeled
by {⊥}, unless it has ↑αo in its label.

Let us denote by êxec(M) the set of all 2AP
∗∪Nom ∪ {⊥}-labeled 〈FM , V ∗∗〉

forests obtained from 〈F, V,E〉 ∈ exec(M) in the above described manner.
The required BFA AM must accept all and only the 2AP

∗∪Nom ∪ {⊥}-labeled
forests in êxec(M). Formally, let M = 〈Ws,We,W0, R, L〉 be a module, AM =
〈Σ,D,Q, δ,Q0,F〉 is defined as follows:

– Σ = 2AP
∗∪Nom ∪ {⊥};

– D =
⋃
w∈W bd(w). That is D contains all the branching degrees in M .

– Q = W × {⊥,�,�}. Thus every node w of M induces three states (w,⊥),
(w,�), and (w,�) in AM . Intuitively, when AM is in state (w,⊥), it can read
only ⊥, in state (w,�), it can read only letters in 2AP

∗∪ Nom, and in state
(w,�), then it can read both letters in 2AP

∗∪Nom and ⊥. In this last case,
it is left to the environment to decide whether the transition to a state of
the form (w,�) is enabled. The three types of states are used to ensure that
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the environment enables all transitions from enabled system nodes, enables
at least one transition from each enabled environment node, and disables
transitions from disabled nodes.

– Q0 = {〈wi,�〉 | wi ∈W0}.
– The transition function δ : Q × Σ × D2 → 2Q

∗×(Q×Root)∗ is defined as
follows. Let x ∈ F such that V (x) = w, succ(w) = 〈w1, . . . , wn, w

′
1, . . . , w

′
m〉,

succ(w) ∩W0 = 〈w′1, . . . , w′m〉, and there exist j1, . . . , jm such that V (jh) =
w′h, for 1 ≤ h ≤ m, then:
• For w ∈We ∪Ws and g ∈ {�,⊥} we have

δ((w, g),⊥, n, 0) = {〈〈(w1,⊥), . . . , (wn,⊥)〉, 〈∅〉〉}

That is, δ((w, g),⊥) contains exactly one n-tuple of all successors of w
without jumps to roots. In this case, all transitions to successors of w
are recursively disabled.
• For w ∈Ws and g ∈ {�,�} we have

δ((w, g), L(w), n,m) = 〈 〈(w1,�), . . . , (wn,�)〉,
〈(〈w′1, j1〉,�), . . . , (〈w′m, jm〉,�)〉 〉}.

That is, δ((w, g),m) contains exactly one (n+m)-tuple of all successors of
w, containing m jumps to roots. In this case all transitions to successors
of w are enabled.
• For w ∈ We and g ∈ {�,�}, let J = {↑αo | α ∈ Prog and o ∈ Nom} and
X ⊆ L(w) such that (X \ J) = (L(w) \ J), (i.e., X may have less jumps
to roots of L(w)), we have
∗ For X ∩ J = ∅ we have

δ((w, g), X, n, 0) = { 〈(w1,�), (w2,�), . . . , (wn,�)〉,
〈(w1,�), (w2,�), . . . , (wn,�)〉,

...
〈(w1,�), (w2,�), . . . , (wn,�)〉}.

That is, δ((w, g), X, n, 0) contains n different n-tuples of all succes-
sors of w, without jumps to roots. When AM proceeds according to
the ith tuple, the environment can disable all transitions to succes-
sors of w, except that to wi.
∗ For X ∩ J = {↑α1

o1 , . . . ↑αs
os
} with s ≥ 1, let 〈w′j1 . . . w′js〉 a subtuple of

〈w′1 . . . w′m〉 such that oi ∈ L(w′ji), we have

δ((w, g), X, n, s) = { 〈 〈(w1,�), . . . , (wn,�)〉,
〈(〈w′j1 , j1〉,�), . . . , (〈w′js , js〉,�)〉 〉

That is, δ((w, g), X, n, s) contains one (n + s)-tuple of successors of
w, where the first n are all not root successors of w and they can be
successively disabled.



194 A. Ferrante and A. Murano

Notice that δ is not defined when n is different from the number of successors of
w that are not jumps to roots, and when the input does not meet the restriction
imposed by the �, �, and ⊥ annotations or by the labeling of w.

The automaton AM has 3 · |W | states, 2|AP |·|R| symbols, and the size of the
transition relation |δ| is bounded by |R|(|W | · 2|R|).

We recall that a node labeled by {⊥} stands for a node that actually does
not exist. Thus, we have to take this into account when we interpret formulas
of the enriched μ-calculus over forests 〈FM , V ∗〉 ∈ êxec(M). In order to achieve
this, as in [KVW01] we define a function f that transforms the input formula
in a formula of the enriched μ-calculus that restricts path quantification to only
paths that never visit a state labeled with {⊥}. The function f we consider
extends that given in [KVW01] and is inductively defined as follows:

– f(true) = true and f(false) = false;
– f(p) = p and f(¬p) = ¬p for all p ∈ AP ∪Nom;
– f(x) = x for all x ∈ V ar;
– f(ϕ1 ∨ϕ2) = f(ϕ1)∨ f(ϕ2) and f(ϕ1 ∧ϕ2) = f(ϕ1)∧ f(ϕ2) for all enriched
μ-calculus formulas ϕ1 and ϕ2;

– f(μx.ϕ(x)) = μx.f(ϕ(x)) and f(νx.ϕ(x)) = νx.f(ϕ(x)) for all x ∈ V ar and
enriched μ-calculus formulas ϕ;

– f(〈n, α〉ϕ) = 〈n, α〉(¬⊥ ∧ f(ϕ)) for n ∈ IN and for all programs α and
enriched μ-calculus formulas ϕ;

– f([n, α]ϕ) = [n, α](¬⊥∧f(ϕ)) for n ∈ IN and for all programs α and enriched
μ-calculus formulas ϕ.

Note that the programs α in the previous definition of f can be either an
atomic program a ∈ Prog or its converse a−. By definition of f , it follows that
for each formula ϕ and 〈F, V 〉 ∈ êxec(M), 〈F, V 〉 satisfies f(ϕ) iff the 2AP

∗∪Nom-
labeled tree obtained from 〈F, V 〉 removing all the nodes labeled by {⊥} satisfies
ϕ. Therefore, the module checking problem of M against an enriched μ-calculus
formula ϕ is reduced to check the existence of a forest 〈F, V 〉 ∈ êxec(M) =
L(AM ) satisfying f(¬ϕ) (note that |f(¬ϕ)| = O(|¬ϕ|)). We reduce the latter
to check the emptiness of a FEA AM×¬ϕ that is defined as the intersection of
the BFA AM with a FEA A¬ϕ accepting exactly the 2AP

∗∪Nom ∪ {⊥} forests
encodings of quasi-forest models of f(¬ϕ). By Lemma 2, if ϕ is an enriched μ-
calculus formula, then A¬ϕ has O(|ϕ|2) states, index |ϕ|, and counting bound
b. Therefore, by Lemma 1, AM×¬ϕ has O(|W | + |ϕ|2) states, index |ϕ|, and
counting bound b. We recall that, by Theorem 1, given a FEA, the emptiness
is exponential only in its number of states and index, thus we have algorithm
to decide the module checking problem for enriched μ-calculus formulas that is
exponential both in the size of the module and the size of the formula.

To show a tight lower bound we recall that CTL module checking is ExpTime-
hard [KVW01] and every CTL formula can be linearly transformed in a modal
μ-calculus formula [Zap02]. This leads to the module checking problem w.r.t.
modal μ-calculus formulas to be ExpTime-hard and thus to the following result

Theorem 2. The module checking problem with respect to enriched μ-calculus
formulas is ExpTime-complete.
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6 Fully Enriched μ-Calculus Module Checking

In this section, we deal with the module checking problem for the fully enriched
μ-calculus and we show that it is undecidable.

Let us note that, since the fully enriched μ-calculus does not enjoy the forest
model property [BP04], we cannot unwind a Kripke structure in a forest. How-
ever, it is always possible to unwind it in an equivalent acyclic graph that we
call computation graph. In order to take into account all the possible behaviors
of the environment, we consider all the possible subgraphs of the computation
graph obtained disabling some transitions from environment nodes but one. We
denote with graphs(M) the set of this graphs. Given a fully enriched μ-calculus
formula ϕ, we have that M |=r ϕ iff K |= ϕ for all K ∈ graphs(M).

To show the undecidability of the addressed problem, we need some further
definitions. An (infinite) grid is a tuple G = 〈IN2, h, v〉 such that h and v are
defined as h(〈x, y〉) = 〈x + 1, y〉 and v(〈x, y〉) = 〈x, y + 1〉. Given a finite set of
types T , we will call tiling on T a function ρ̂ : IN2 → T that associates a type
from T to each vertex of an infinite grid G, and we call tiled infinite grid the
tuple 〈G, T, ρ̂〉. A grid model is an infinite Kripke structure K = 〈W, {w0}, R, L〉,
on the set of atomic programs Prog = {l−, v}, such that K can be mapped on
a grid in such a way that w0 corresponds to the vertex 〈0, 0〉, R(v) corresponds
to v and R(l−) corresponds to h. We say that a grid model K “corresponds” to
a tiled infinite grid 〈G, T, ρ̂〉 if every state of K is labeled with only one atomic
proposition (and zero or more nominals) and there exists a bijective function
ρ : T → AP such that, if wx,y is the state of K corresponding with the node
〈x, y〉 of G, then ρ(ρ̂(〈x, y〉)) ∈ L(wx,y).

Theorem 3. The module checking problem for fully enriched μ-calculus is un-
decidable.

Proof sketch. To show the result, we use a reduction from the domino problem,
known to be undecidable [Ber66]. The domino problem is defined as follows.

Let T be a finite set of types, and H,V ⊆ T 2 be two relations describing the
types that cannot be vertically and horizontally adjacent in an infinite grid. The
domino problem is to decide whether there exists a tiled infinite grid 〈G, T, ρ̂〉
such that ρ̂ preserves the relations H and V . We call such a tiling function a
legal tiling for G on T .

In [BP04], Bonatti and Peron showed undecidability for the satisfiability prob-
lem for fully enriched μ-calculus by also using a reduction from the domino
problem. Hence, given a set of types T and relations H and V , they build a
(alternation free) fully enriched μ-calculus formula ϕ such that ϕ is satisfiable
iff the domino problem has a solution in a tiled infinite grid, with a legal tiling
ρ on T (with respect to H and V ). In particular, the formula they build can be
only satisfiable on a grid model K corresponding to a tiled infinite grid with a
legal tiling ρ on T . In the reduction we propose here, we use the formula ϕ used
in [BP04]. It remains to define the module.

Let {G1, G2, . . .} be the set of all the infinite tiled grids on T (i.e., Gi =
〈G, T, ρ̂i〉), we build a module M such that graphs(M) contains, for each i ≥ 1,
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a grid models corresponding to Gi. Therefore, we can decide the domino problem
by checking whether M |=r ¬ϕ. Indeed, if M |=r ¬ϕ, then all grid models
corresponding to Gi do not satisfy ϕ and, therefore, there is no solution for the
domino problem. On the other side, if M �|=r ¬ϕ, then there exists a model for
ϕ; since ϕ can be satisfied only on a grid model corresponding to a tiled infinite
grid with a legal tiling on T with respect to H and V , we have that the domino
problem has a solution.

Formally, let T = {t1, . . . , tm} be the set of types, the module M = 〈Ws,We,
W0, R, L〉 with respect to atomic programs Prog = {l−, v}, atomic propositions
AP = T , and nominals Nom = {o1, . . . , om}, is defined as follows:

• Ws = ∅, We = {x1, . . . , xm, y1, . . . , ym} and W0 = {x1, . . . , xm};
• for all i ∈ {1, . . .m}, L(ti) = {xi, yi} and L(oi) = {xi};
• R(v) = {〈xi, xj〉|i, j ∈ {1, . . . ,m}}∪ {〈yi, yj〉|i, j ∈ {1, . . . ,m}} and R(l−) =
{〈xi, yj〉|i, j ∈ {1, . . . ,m}} ∪ {〈yi, xj〉|i, j ∈ {1, . . . ,m}}

Notice that we duplicate the set of nodes labeled with tiles since we cannot
have pairs of nodes in M labeled with more than one atomic program (in our
case, with both v and l−). Moreover the choice of labeling nodes xi with nominals
is arbitrary. Finally, from the fact that the module contains only environment
nodes, it immediately follows that, for each i, the grid model corresponding to
the infinite tiled grid Gi is contained in graphs(M). ��

7 Conclusions

In [KVW01], module checking has been introduced as a useful framework for the
verification of open finite-state systems. There, it has been shown that while for
LTL the complexity of the model checking problem coincides with that of mod-
ule checking (i.e., it is Pspace-complete), for the branching time paradigm the
problem of module checking is much harder. In fact, CTL (resp., CTL∗) mod-
ule checking is ExpTime-complete (resp., 2ExpTime-complete), while model
checking is solvable in linear time (resp., exponential time).

In this paper, we have extended the framework of module checking problem
for finite-state systems to formulas of the fully enriched μ-calculus and showed
that this problem becomes undecidable in this setting. Also, we have investigated
this problem with respect to formulas of interesting fragments of the full calcu-
lus and, specifically, those belonging to the full hybrid, full graded, and hybrid
graded μ-calculus, and showed, in all cases, that module checking is decidable
and ExpTime-complete. In particular, for the upper bound we have proposed
an algorithm that is exponential in both the size of the model and the formula.
Since module checking for μ-calculus subsumes that for CTL and for the latter
the program complexity (i.e., the complexity of the problem w.r.t. a fixed for-
mula) is polynomial, it remains as an open problem to decide the exact program
complexity of module checking for the considered fragments of the full calculus.

Finally, we recall that model checking for modal μ-calculus is in UP∩co-
UP (see [Zap02] for a survey). Since we have proved that module checking for
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modal μ-calculus is ExpTime-hard, we conclude that also for this logic module
checking is harder than model checking. Moreover, the model checking algorithm
considered in [Zap02] for modal μ-calculus can be easily extended to deal with
formulas of the fully enriched μ-calculus, showing that also for this logic the
model checking problem is in UP∩co-UP. Using this conjecture, we can extend
to the full calculus and its fragments all the previous observations regarding the
modal μ-calculus.
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Abstract. We study the complexity of satisfiability in the expressive extension
ICPDL of PDL (Propositional Dynamic Logic), which admits intersection and
converse as program operations. Our main result is containment in 2EXP, which
improves the previously known non-elementary upper bound and implies 2EXP-
completeness due to an existing lower bound for PDL with intersection. The proof
proceeds by showing that every satisfiable ICPDL formula has a model of tree-
width at most two and then giving a reduction to the (non)-emptiness problem for
alternating two-way automata on infinite trees. In this way, we also reprove in an
elegant way Danecki’s difficult result that satisfiability for PDL with intersection
is in 2EXP.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in 1979 as
a modal logic for reasoning about the input/output behaviour of programs [6]. In PDL,
there are two syntactic entities: formulas, built from Boolean and modal operators and
interpreted as sets of nodes of a Kripke structure; and programs, built from the operators
test, union, composition, and Kleene star (reflexive transitive closure) and interpreted
as binary relations in a Kripke structure. Since its invention, many different extensions
of PDL have been proposed, mainly by allowing additional operators on programs.
Three prominent such extensions are PDL with the converse operator (CPDL), PDL
with the intersection operator (IPDL), and PDL with the negation operator on programs
(NPDL), see the monograph [9] and references therein. While some of these extensions
such as CPDL are well-suited for reasoning about programs, many of them aim at the
numerous other applications that PDL has found since its invention. Notable examples
of such applications include agent-based systems [14], regular path constraints [2], and
XML-querying [1,17]. In AI, PDL received attention due to its close relationship to
description logics [7] and epistemic logic [18,10].

The most important decision problem for PDL is satisfiability: is there a Kripke
structure which satisfies a given formula at some node? A classical result of Fischer and
Ladner states that satisfiability for PDL is EXP-complete [6,16]. The EXP upper bound
extends without difficulty to CPDL and can even be established for several extensions
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thereof [19]. In contrast, the precise complexity of satisfiability for IPDL was a long
standing open problem. In [4], Danecki proved a 2EXP upper bound. Alas, Danecki’s
proof is rather difficult and many details are omitted in the published version. One of the
reasons for the difficulty of IPDL is that, unlike PDL, it lacks the tree model property,
i.e., a satisfiable IPDL formula does not necessarily have a tree model. Danecki proved
that every satisfiable IPDL formula has a special model which can be encoded by a tree.
This observation paves the way to using automata theoretic techniques in decision pro-
cedures for IPDL. Only recently, a matching 2EXP lower bound for IPDL was shown
by Lange and the third author [11]. Regarding NPDL, it is long known that satisfiability
is undecidable [9]. As recently shown in [9], the fragment of NPDL in which program
negation is restricted to atomic programs is decidable and EXP-complete.

In this paper, we consider extensions of PDL with (at least two of) converse, intersec-
tion, and negation. Our main result concerns the complexity of satisfiability in ICPDL,
the extension of PDL with both converse and intersection. Decidability was shown by
the third author in [12] using a reduction to monadic second order logic over the infinite
binary tree. However, this only yields a nonelementary algorithm which does not match
the 2EXP lower bound that ICPDL inherits from IPDL. We prove that satisfiability in
ICPDL can be decided in 2EXP, and thus settle the complexity of ICPDL as 2EXP-
complete. There are some additional virtues of our result. First, we provide a shorter
and (hopefully) more comprehensible proof of the 2EXP upper bound for IPDL. Sec-
ond, the information logic DAL (data analysis logic) [5] is a fragment of ICPDL (but not
of IPDL) and thus inherits the 2EXP upper bound. And third, our result has applications
in description logic and epistemic logic, see [12] for more details.

Our main result is proved in three clearly separated parts. In part one, we establish a
model property for ICPDL based on the notion of tree width. Tree width measures how
close a graph is to a tree, and is one of the most important concepts in modern graph
theory with many applications in computer science. As mentioned earlier, IPDL (and
hence also ICPDL) does not have the tree model property. We prove that ICPDL enjoys
an ”almost tree model property”: every satisfiable ICPDL formula has a model of tree
width at most two This part of our proof is comparable to Danecki’s observation that
every satisfiable IPDL formula has a special model which can be encoded by a tree.

In part two of our proof, we use the established model property to give a poly-
time reduction of satisfiability in ICPDL to what we call ω-regular tree satisfiability
in ICPDL. The latter problem is defined in terms of two-way alternating parity tree au-
tomata (TWAPTAs). A TWAPTA is an alternating automaton with a parity acceptance
condition that runs on infinite node-labeled trees and can move upwards and down-
wards in the tree. Infinite node-labeled trees can be viewed in a natural way as Kripke
structures and thus we can interpret ICPDL formulas in such trees. Now, ω-regular
tree satisfiability in ICPDL is the following problem: given an ICPDL formula ϕ and
a TWAPTA T , is there a tree accepted by T which is a model of ϕ? Our reduction of
satisfiability in ICPDL to this problem is based on a suitable encoding of width two
tree decompositions of Kripke structures. The TWAPTA constructed in the reduction
accepts precisely such encodings.

Finally, in part three we reduce ω-regular tree satisfiability in ICPDL to the non-
emptiness problem for TWAPTAs. The latter problem was shown to be EXP-complete
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in [20]. Since our reduction of ω-regular tree satisfiability in ICPDL to TWAPTA-non-
emptiness involves an exponential blow-up in automata size, we obtain an 2EXP upper
bound for ω-regular tree satisfiability in ICPDL and also for standard satisfiability in
ICPDL. The reduction employs a technique from [8], where the first and second author
proved that the model-checking problem for IPDL over transition graphs of pushdown
automata is 2EXP-complete. In fact, this model-checking problem can be easily reduced
to ω-regular tree satisfiability in ICPDL. This illustrates that ω-regular tree satisfiability
in ICPDL is of interest beyond its application in the current paper.

To obtain a more complete picture, we finally investigate the option of extending
ICPDL with program negation. It turns out that in the presence of intersection, program
negation is problematic from a computational perspective. In particular, we prove that
already IPDL extended with negation restricted to atomic programs is undecidable. This
should be contrasted with the decidability result for PDL extended with atomic negation
mentioned above [13].

2 ICPDL

Let P be a set of atomic propositions and A a set of atomic programs. Formulas ϕ and
programs π of the logic ICPDL are defined by the following grammar, where p ranges
over P and a over A:

ϕ ::= p | ¬ϕ | 〈π〉 ϕ
π ::= a | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π∗ | π | ϕ?

We introduce the usual abbreviations ϕ1 ∧ ϕ2 = 〈ϕ1?〉ϕ2, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2),
and [π]ϕ = ¬〈π〉¬ϕ. The fragment IPDL of ICPDL is obtained by dropping the π
clause from the above grammar.

The semantics of ICPDL is defined in terms of Kripke structures. A Kripke structure
is a tuple K = (X, {→a | a ∈ A}, ρ), where (i) X is a set of states, (ii)→a ⊆ X ×X
is a transition relation for each a ∈ A, and (iii) ρ : X → 2P assigns to each state a set
of atomic propositions. Given a Kripke structureK = (X, {→a | a ∈ A}, ρ), we define
by mutual induction for each ICPDL program π a binary relation [[π]]K ⊆ X ×X and
for each ICPDL formula ϕ a subset [[ϕ]]K ⊆ X as follows: 1

[[p]]K = {x | p ∈ ρ(x)} for p ∈ P

[[¬ϕ]]K = X \ [[ϕ]]K
[[〈π〉ϕ]]K = {x | ∃y : (x, y) ∈ [[π]]K ∧ y ∈ [[ϕ]]K}

[[a]]K =→a for a ∈ A

[[ϕ?]]K = {(x, x) | x ∈ [[ϕ]]K}
[[π∗]]K = [[π]]∗K
[[π]]K = {(y, x) | (x, y) ∈ [[π]]K}

[[π1 op π2]]K = [[π1]]K op [[π2]]K for op ∈ {∪,∩, ◦}
1 Overloading notation, we use ◦ both as a program operator of ICPDL and to denote the com-

position operator for binary relations, i.e., R ◦ S = {(a, b) | ∃c : (a, c) ∈ R, (c, b) ∈ S}.
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For x ∈ X we write (K,x) |= ϕ if x ∈ [[ϕ]]K . If (K,x) |= ϕ for some x ∈ X , then K
is a model of ϕ. The formula ϕ is satisfiable if there exists a model of ϕ.

Since the converse operator can be pushed down to atomic programs, we assume
for the rest of this paper that converse is only applied to atomic programs. Let us set
A = {a | a ∈ A}. The size |ϕ| of an ICPDL formula ϕ and the size |π| of an ICPDL
program π is defined as follows: |p| = |a| = 1 for all p ∈ P and a ∈ A ∪ A, |¬ϕ| =
|ϕ?| = |ϕ|+1, |〈π〉ϕ| = |π|+ |ϕ|+1, |π1 op π2| = |π1|+ |π2|+1 for op ∈ {∪,∩, ◦},
and |π∗| = |π|+ 1.

The main result of this paper is the following.

Theorem 1. Satisfiability in ICPDL is 2EXP-complete.

As discussed in the introduction, it suffices to give a 2EXP algorithm for satisfiability in
ICPDL because of the known 2EXP lower bound for IPDL [11]. The rest of the paper
is organized as follows. In Section 3, we show that every satisfiable ICPDL formula has
a model of tree width at most two. In Section 4, satisfiability of ICPDL formulas in a
model of tree width at most two is reduced to ω-regular tree satisfiability in ICPDL. In
Section 5, the latter problem is shown to be in 2EXP. Finally, Section 6 contains the
undecidability proof for IPDL extended with negation of atomic programs.

3 Models of Tree-Width Two Suffice

We start with defining tree decompositions and the tree-width of Kripke structures.
Although we do not assume countability of Kripke structures in general, it suffices to
consider tree decompositions and the tree width only of countable Kripke structures.
Let K = (X, {→a | a ∈ A}, ρ) be a countable Kripke structure. A tree decomposition
ofK is a tuple (T, (Xv)v∈V ), where T = (V,E) is a countable undirected tree,Xv is a
subset of X (also called a bag) for all v ∈ V , and the following conditions are satisfied:

–
⋃
v∈V Xv = X

– For every transition x→a y of K there exists v ∈ V with x, y ∈ Xv.
– For every x ∈ X , the set {v ∈ V | x ∈ Xv} is a connected subset of the tree T .

The width of this tree decomposition is the supremum of {|Xv| − 1 | v ∈ V }. The tree
width of a Kripke structureK is the minimal k such that K has a tree decomposition of
width k. The purpose of this section is to prove the following theorem.

Theorem 2. Every satisfiable ICPDL formula has a countable model of tree width at
most two.

As a preliminary to proving Theorem 2, we mutually define the set of subprograms
subp(α) and the set of subformulas subf(α), where α is either an ICPDL formula or an
ICPDL program:

– subp(a) = {a}, subp(a) = {a, a}, subf(a) = subf(a) = ∅ for a ∈ A;
– subp(π) = {π} ∪ subp(π1) ∪ subp(π2) and subf(π) = subf(π1) ∪ subf(π2) if
π = π1 op π2 for op ∈ {∪,∩, ◦};

– subp(π∗) = {π∗} ∪ subp(π) and subf(π∗) = subf(π);
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– subp(ϕ?) = {ϕ?} ∪ subp(ϕ) and subf(ϕ?) = subf(ϕ)
– subp(p) = ∅ and subf(p) = {p} for p ∈ P;
– subp(¬ϕ) = subp(ϕ) and subf(¬ϕ) = {¬ϕ} ∪ subf(ϕ);
– subp(〈π〉ϕ) = subp(π)∪ subp(ϕ) and subf(〈π〉ϕ) = {〈π〉ϕ}∪ subf(π)∪ subf(ϕ).

To prove Theorem 2, fix a satisfiable formula ϕ0, a (not necessarily countable) model
K = (X, {→a | a ∈ A}, ρ) of ϕ0, and a state x0 ∈ [[ϕ0]]K . Also fix choice functions
W (for witness), U (for union), C (for composition), and S (for star) such that

– if ϕ = 〈π〉ψ ∈ subf(ϕ0) and x ∈ [[ϕ]]K , then W (x, ϕ) = y ∈ X such that
y ∈ [[ψ]]K and (x, y) ∈ [[π]]K ;

– if π = χ ∪ σ ∈ subp(ϕ0) and (x, y) ∈ [[π]]K , then U(x, π, y) = τ ∈ {χ, σ} such
that (x, y) ∈ [[τ ]]K .

– if π = χ ◦ σ ∈ subp(ϕ0) and (x, y) ∈ [[π]]K , then C(x, π, y) = z ∈ X such that
(x, z) ∈ [[χ]]K and (z, y) ∈ [[σ]]K ;

– if π = χ∗ ∈ subp(ϕ0) and (x, y) ∈ [[π]]K with x �= y, then S(x, π, y) = z ∈ X
such that there exists a sequence x0, . . . , xn ∈ X with
1. x0 = x and xn = y;
2. (xi, xi+1) ∈ [[χ]]K for all i < n;
3. x0, . . . , xn is a shortest sequence with Properties 1 and 2;
4. x1 = z.

Now we inductively define a node-labeled tree (T, (tv)v∈V ) with T = (V,E) and
tv ∈ X ∪ X2 ∪ X3 for all v ∈ V . During the construction, each node in the tree
is assigned a type, which may either be “singleton” or π for π ∈ subp(ϕ0). Figure 1
illustrates the different cases, which are as follows:

1. Start the construction with a root node v of type singleton and set tv = x0;
2. if v ∈ V is of type singleton and tv = x, then for every ϕ = 〈π〉ψ ∈ subf(ϕ0) such

that x ∈ [[ϕ]]K , add a successor w of type π and set tw = (x,W (x, ϕ));
3. if v ∈ V is of type a or a, where a ∈ A and tv = (x, y), then add a successor w of

type singleton and set tw = y;
4. if v ∈ V is of type π = χ ∪ σ and tv = (x, y), then

– add a successor w of type singleton and set tw = y;
– add a successor w′ of type U(x, π, y) and set tw′ = (x, y);

5. if v ∈ V is of type π = χ ∩ σ and tv = (x, y), then
– add a successor w of type singleton and set tw = y;
– add successors u, u′ of type χ and σ, respectively, and set tu = tu′ = (x, y);

6. if v ∈ V is of type π = χ ◦ σ and tv = (x, y), then
– add a successor w of type singleton and set tw = y;
– add a successor w′ of type π and set tw = (x,C(x, π, y), y);

7. if v ∈ V is of type π = χ ◦ σ and tv = (x, z, y), then add successors u, u′ of type
χ and σ and set tu = (x, z) and tu′ = (z, y);

8. if v ∈ V is of type π = χ∗ and tv = (x, y) with x �= y, then
– add a successor w of type singleton and set tw = y;
– add a successor w′ of type π and set tw = (x, S(x, π, y), y);

9. if v ∈ V is of type π = χ∗ and tv = (x, z, y), then add successors u, u′ of type χ
and π, respectively, and set tu = (x, z) and tu′ = (z, y).



PDL with Intersection and Converse Is 2EXP-Complete 203

1.
singleton

x0

2.
singleton
x

π

(x,W (x,ϕ))

3.
a/a

(x, y)

singletony

4.
π =χ∪σ

(x, y)

singlet.
y

U(x,π,y)

(x, y)

5.
π =χ∩σ

(x, y)

singlet.
y

χ

(x, y)
σ

(x, y)

6.
π =χ◦σ

(x, y)

singlet.
y

π

(x,C(x,π,y),y)

7. π =χ◦σ

(x, z, y)

χ

(x, z)
σ

(z, y)

8.
π =χ∗

(x, y)

singlet.
y

π

(x,S(x,π,y),y)

9. π =χ∗
(x, z, y)

χ

(x, z)
π

(z, y)

Fig. 1. Inductive definition of (T, (tv)v∈V )

We assume that successors are added at most once to each node in the induction step and
that the construction proceeds in a breadth first manner. Note that nodes of type ψ? are
always leafs, and so are nodes v of type χ∗ with tv = (x, x) for some x ∈ X . Another
important property, which illustrates the connection between K and the constructed
tree, is the following:

∀v ∈ V : if v is of type π and tv = (x, y), then (x, y) ∈ [[π]]K .

A place is a pair (v, x) such that x is a member of tv . We denote the set of all places
with P and let ∼ be the smallest equivalence relation on P which contains all pairs
of the form ((u, x), (v, x)), where (u, v) ∈ E is an edge of the tree T . We use [v, x]
to denote the equivalence class of (v, x) ∈ P w.r.t. the relation ∼. Define a Kripke
structure K ′ = (X ′, {→′a | a ∈ A}, ρ′) as follows:

– X ′ = {[v, x] | (v, x) ∈ P};
– [v, x]→′a [v′, y] if and only if at least one of the following holds:
• there is u ∈ V of type a s.t. tu = (x, y), (u, x) ∼ (v, x), and (u, y) ∼ (v′, y);
• there is u ∈ V of type a s.t. tu = (y, x), (u, x) ∼ (v, x), and (u, y) ∼ (v′, y).

– ρ′([v, x]) = ρ(x).

Since K ′ is clearly countable, to finish the proof it suffices to show the following:
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1. settingXv = {[v, x] | x occurs in tv} for all v ∈ V , we obtain a tree decomposition
(T, (Xv)v∈V ) of K ′ of width at most two;

2. K ′ satisfies ϕ0.

Using the definitions of K ′ and ∼, it is readily checked that (T, (Xv)v∈V ) is a tree de-
composition of K ′. Tree width two is then immediate by construction of (T, (tv)v∈V ).
Finally, we can prove the following, whose Point 3 yields that K ′ is a model of ϕ0.

Lemma 1. For all v, u ∈ V , x, y ∈ X , π ∈ subp(ϕ0), and ϕ ∈ subf(ϕ0),

1. if tv = (x, y) and v is of type π, then ([v, x], [v, y]) ∈ [[π]]K′ ;
2. if (v, x), (u, y) ∈ P and ([v, x], [u, y]) ∈ [[π]]K′ , then (x, y) ∈ [[π]]K ;
3. if (v, x) ∈ P , then (K,x) |= ϕ if and only if (K ′, [v, x]) |= ϕ.

4 Reduction to ω-Regular Tree Satisfiability

We exploit the model property established in the previous section to reduce satisfiability
in ICPDL to ω-regular tree satisfiability in ICPDL. Since the latter is defined in terms
of alternating automata on infinite trees, we start with introducing these automata and
the trees on which they work.

Let Γ and Υ be finite sets. A Γ -labeled (directed) Υ -tree is a partial function T :
Υ ∗ → Γ such that dom(T ) (the set of nodes) is prefix-closed. If dom(T ) = Υ ∗, then
T is called complete. If Υ is understood or not important, we simply talk of Γ -labeled
trees. We deliberately work with two kinds of trees here: undirected trees as a basis for
tree decompositions in Section 3, and directed trees introduced here as the objects on
which alternating tree automata work.

Let P be a finite set of atomic propositions and A a finite set of atomic programs,
not necessarily identical to the sets P and A fixed in Section 2. A complete 2P-labeled
A-tree T can be viewed as a Kripke structure KT = (A∗, {→a| a ∈ A}, T ) over the set
of atomic propositions P and atomic programs A, where→a = {(u, ua) | u ∈ A∗} for
all a ∈ A. In the following, we identify T and the associated Kripke structure KT .

We now define alternating automata on complete Γ -labeled Υ -trees. For a finite set
X we denote by B+(X) the set of all positive boolean formulas with elements of X
used as variables. The constants true and false are admitted. A subset Y ⊆ X can
be seen as a valuation in the obvious way: it satisfies a formula θ ∈ B+(X) if and
only if by assigning true to all elements in Y the formula θ is evaluated to true.
Define the set of Υ -moves as mov(Υ ) = Υ � Υ � {ε}, where Υ = {a | a ∈ Υ}. For
u ∈ Υ ∗ and a ∈ Υ , define ua = v if u = va for some v ∈ Υ ∗ and ua = undefined
if u �∈ Υ ∗a. A two-way alternating parity tree automaton (TWAPTA for short) over
Γ -labeled Υ -trees is a tuple T = (S, δ, s0,Acc), where (i) S is a finite non-empty set of
states, (ii) δ : S × Γ → B+(S ×mov(Υ )) is the transition function, (iii) s0 ∈ S is the
initial state, and (iv) Acc : S → N is the priority function which assigns to each state
a nonnegative integer. Define |Acc| = max{Acc(s) | s ∈ S}. Let T be a complete
Γ -labeled Υ -tree, u ∈ Υ ∗ a node, and s ∈ S a state. An (s, u)T -run of T is a (not
necessarily complete) (S × Υ ∗)-labeled Ω-tree TR for some finite set Ω such that the
following two conditions are satisfied: (i) TR(ε) = (s, u), and (ii) if α ∈ dom(TR) with
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TR(α) = (q, v) and δ(q, T (v)) = θ, then there exists a subset Y ⊆ S ×mov(Υ ) that
satisfies the formula θ and for all (s′, e) ∈ Y , ve is defined and there exists a σ ∈ Ω
with ασ ∈ dom(TR) and TR(ασ) = (s′, ve). We say that an (s, u)T -run is successful,
if for every infinite path α1α2 · · · ∈ dom(TR)ω of TR (α1 = ε, αi+1 = αiσ for some
σ ∈ Ω), the number min{Acc(q) | q ∈ S, TR(αi) ∈ {q}× Υ ∗ for infinitely many i} is
even. Define

[[T , s]]T = {u ∈ Υ ∗ | there exists a successful (s, u)T -run of T } and

L(T ) = {T | ε ∈ [[T , s0]]T }.

The subscript T is omitted if clear from the context. An ω-regular tree language L is a
set of complete Γ -labeled Υ -trees such that L(T ) = L for some TWAPTA T .

Our TWAPTA model differs slightly from other definitions in the literature: First,
we run TWAPTA only on complete trees; this will be convenient in Section 5. Second,
usually a TWAPTA has an operation ↑ for moving to the parent node of the current
node. In our model, ↑ is replaced by the operations a ∈ Υ for all a ∈ Υ . The operation
a can only be executed if the current node is an a-successor of its parent node. It is easy
to see that these two models are equivalent.

In Section 5, we will make use of the following result of Vardi:

Theorem 3 ([20]). For a given TWAPTA T = (Q, δ, s0Acc) it can be checked in time
exponential in |Q| · |Acc| whether L(T ) = ∅.

We are now in the position to formally define ω-regular tree satisfiability in ICPDL:
given a TWAPTA T over 2P-labeled A-trees and an ICPDL formulaϕ using only atomic
propositions from P and atomic programs from A (in the following we simply say that
ϕ is over P and A), decide whether there is a T ∈ L(T ) such that (T, ε) |= ϕ.

To reduce satisfiability in ICPDL to ω-regular tree satisfiability in ICPDL, we trans-
late an ICPDL formula ϕ over P and A into a TWAPTA T and an ICPDL formula ϕ̂
over

A = {a, b, 0, 1, 2} and P = {t} ∪ prop(ϕ) ∪ ({0, 1, 2} × prog(ϕ) × {0, 1, 2}),

where prop(ϕ) = subf(ϕ) ∩ P and prog(ϕ) = subp(ϕ) ∩ A. Intuitively, each 2P-
labeled A-tree T accepted by T encodes a tree decomposition of a Kripke structure
K over P and A of tree width at most two (in a sense yet to be made precise), and T
is a model of ϕ̂ if and only if K is a model of ϕ. To achieve an elegant encoding of
tree decompositions, we work with good tree decompositions. A tree decomposition
(T, (Xv)v∈V ) with T = (V,E) is called good if

– V = {a, b}∗, i.e., T is a complete binary tree, and
– Xv ⊆ Xvc or Xvc ⊆ Xv for all v ∈ V and c ∈ {a, b}.

It is easily seen how to convert a tree decomposition of a Kripke structure K of width
k into a good tree decomposition of K of width k by introducing additional nodes.

Lemma 2. Every countable Kripke structure of tree width k has a good tree decompo-
sition of width k.
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In the following, we only need the case where k = 2. To encode a good tree decom-
position (T, (Xv)v∈{a,b}∗) of width two of a Kripke structure as a 2P-labeled A-tree,
we think of every tree node v ∈ {a, b}∗ as being divided into three slots which can
be empty or filled with a state of the Kripke structure. When moving to a child, by the
second condition of good tree decompositions we either add nodes to empty slots or
remove nodes from slots, but not both. The three slots of the node v are described by
new leafs v0, v1, v2. This explains our choice of A above. When slot vi is occupied by
a state of the Kripke structure, then vi receives the special label t ∈ P (and probably
propositional letters as additional labels). Information about the edges of the Kripke
structure are stored in tree nodes from {a, b}∗. We now formally define these encod-
ings. We work with complete trees because TWAPTAs work on such trees. Nodes that
are present only to ensure completeness of the tree are labelled with the empty set. A
complete 2P-labeled A-tree T is called valid if the following holds for all v ∈ A∗:

– if v ∈ {a, b}∗ and i ∈ {0, 1, 2}, then either T (vi) = ∅ or {t} ⊆ T (vi) ⊆ {t} ∪ P;
set Xv := {i | t ∈ T (vi)};

– if v ∈ {a, b}∗, then T (v) ⊆ Xv × A×Xv;
– if v ∈ {a, b}∗ and c ∈ {a, b}, then Xv ⊆ Xvc or Xvc ⊆ Xv;
– if v /∈ {a, b}∗ ∪ {a, b}∗{0, 1, 2}, then T (v) = ∅.

Let T be a valid 2P-labeled A-tree. We now make precise the Kripke structure K(T )
over P and A whose good tree decomposition is described by T . Define a set of places
P = {u ∈ A∗ | t ∈ T (u)} and let ∼ be the smallest equivalence relation on P which
contains all pairs (vi, vci) ∈ P × P , where v ∈ {a, b}∗, c ∈ {a, b}, and 0 ≤ i ≤ 2.
For u ∈ P , we use [u] to denote the equivalence class of u w.r.t. ∼. Now set K(T ) =
(X, {→a| a ∈ A}, ρ), where:

X = {[u] | u ∈ P}
→a = {([vi], [vj]) | v ∈ {a, b}∗, (i, a, j) ∈ T (v)}

ρ([u]) =
⋃

v∈[u]

T (v) ∩ P

The structure K(T ) should not be confused with T viewed as a Kripke structure over
P and A as discussed at the beginning of this section: the original formula ϕ whose
satisfiability is to be decided is interpreted in K(T ) whereas the reduction formula ϕ̂,
to be defined below, is interpreted in T viewed as a Kripke structure. The following two
lemmas are easily proved.

Lemma 3. If T is a valid 2P-labeled A-tree, then the Kripke structure K(T ) has tree
width at most two. Conversely, ifK is of tree width at most two, then there exists a valid
2P-labeled A-tree T such that K is isomorphic to K(T ).

Lemma 4. The set of all valid 2P-labeled A-trees is an ω-regular tree language.

Now we show how to convert formulas ψ and programs π over prop(ϕ) and prog(ϕ)
into formulas ψ̂ and programs π̂ over P and A such that for every valid 2P-labeled A-tree
T , we have (i) [[π̂]]T ⊆ P × P and (ii) for all u, v ∈ P ,

u ∈ [[ψ̂]]T ⇔ [u] ∈ [[ψ]]K(T )

(u, v) ∈ [[π̂]]T ⇔ ([u], [v]) ∈ [[π]]K(T )
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First, we define the auxiliary program

π1
∼ =

⋃

i∈{0,1,2}
t? ◦ i ◦ (a ∪ b ∪ a ∪ b) ◦ i ◦ t?

and let π∼ = (π1∼)∗. Note that [[π∼]]T equals ∼. Now, for all a ∈ prog(ϕ) and p ∈
prop(ϕ) we define

â =
⋃

i,j∈{0,1,2}
π∼ ◦ i ◦ (i, a, j)? ◦ j ◦ π∼ and p̂ = 〈π∼〉p.

To extend this translation to complex ICPDL formulas and programs, we can simply
replace all atomic programs a and formulas p with â and p̂, respectively. From the
construction of ϕ̂ and Lemmas 2 and 3, we obtain the following.

Proposition 1. The formula ϕ has a model of tree width at most two if and only if there
is a valid 2P-labeled A-tree T such that (T, ε) |= 〈(0 ∪ 1 ∪ 2) ◦ t?〉ϕ̂.

From Theorem 2, Lemma 4, and Proposition 1, we obtain:

Theorem 4. There is a polynomial time reduction from satisfiability in ICPDL to
ω-regular tree satisfiability in ICPDL.

5 ω-Regular Tree Satisfiability in ICPDL Is in 2EXP

Our remaining goal is to show that ω-regular tree satisfiability in ICPDL can be solved
in doubly exponential time. This is achieved by a reduction to the EXP-complete (non)-
emptiness problem for TWAPTAs. The main ingredient of the reduction is an inductive
translation of ICPDL formulas into TWAPTAs and ICPDL programs into a certain kind
of non-deterministic automata which we call NFAs. NFAs resemble word automata, but
navigate in a complete A-tree reading symbols from A ∪ A. They can make conditional
ε-transitions, which are executable only if the current tree node is accepted by some
fixed TWAPTA. We start with presenting NFAs and the inductive translation.

Fix a finite set of atomic propositions P and a finite set of atomic programs A. For the
rest of this section, it is more convenient to assume that a TWAPTA does not have an
initial state. Hence, it is just a tuple of the form (S, δ,Acc). A non-deterministic finite
automaton (NFA) A over a TWAPTA T = (S, δ,Acc) is a pair (Q,→A), where Q is a
finite set of states and→A is a set of transitions of the following form, where q, q′ ∈ Q:

q
a−→A q

′ with a ∈ A ∪ A or q
T ,s−−→A q

′ with s ∈ S.

Transitions of the latter kind are called test transitions. Let T be a complete 2P-labeled
A-tree. Define the relation⇒A,T ⊆ (A∗ ×Q)× (A∗ ×Q) as the smallest relation such
that

– (u, p)⇒A,T (ua, q) if p
a−→A q (a ∈ A, u ∈ A∗);

– (ua, p)⇒A,T (u, q) if p
a−→A,T q (a ∈ A, u ∈ A∗);

– (u, p)⇒A,T (u, q) if p
T ,s−−→A q and u ∈ [[T , s]]T (u ∈ A∗).

For a pair (p, q) ∈ Q×Q, define [[A, p, q]]T = {(u, v) ∈ A∗×A∗ | (u, p)⇒∗A,T (v, q)}.
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5.1 From ICPDL to Automata

For each ICPDL formula ϕ, we construct a TWAPTA T (ϕ) such that for all 2P-labeled
A-trees T , [[T (ϕ), s]]T = [[ϕ]]T , where s is some selected state of T (ϕ). For each ICPDL
program π, we construct a TWAPTA T (π) and an NFA A(π) over T (π) such that for
all 2P-labeled A-trees T , [[A(π), p, q]]T = [[π]]T , where p, q are two selected states of
A(π). In the following, the index T will be omitted for brevity. The construction is by
induction on the structure of ϕ and π. We start with the construction of the TWAPTAs
T (ϕ) for ICPDL formulas ϕ.

If ψ = p ∈ P, we put T (ψ) = ({s}, δ, s �→ 1), where for all Y ⊆ P we have
δ(s, Y ) = true if p ∈ Y and δ(s, Y ) = false otherwise.

If ψ = ¬θ, then T (ψ) is obtained from T (θ) by applying the standard comple-
mentation procedure where all positive Boolean formulas on the right-hand side of the
transition function are dualized and the acceptance condition is complemented by in-
creasing the priority of every state by one, see e.g. [15].

If ψ = 〈π〉θ, then we have inductively constructedA = A(π) with state set Q over a
TWAPTA T (π) = (S1, δ1,Acc1) such that [[π]] = [[A, p0, q0]] for some p0, q0 ∈ Q. We
have also constructed a TWAPTA T (θ) = (S2, δ2,Acc2) such that [[θ]] = [[T (θ), s0]] for
some s0 ∈ S2. We construct the TWAPTA T (ψ) = (S, δ,Acc) with S = Q� S1 � S2.
For states in S1 or in S2, the transitions of T (ψ) are as in T (π) and T (θ), respectively.
It remains to simulate A. Handling transitions of A of the form q

a−→A q
′ is easy: T (ψ)

simply navigates up or down in the tree as required. When T (ψ) is in state q ∈ Q and

there is a transition q
T (π),s−−−−→A r, we branch universally to simulate both T (π) in state

s and the state change of A to state r. Finally, we admit an ε-transition from state q0 to
s0, thus simulating T (θ) after finishing the simulation of A. Formally, for q ∈ Q and
Y ⊆ P, we define

δ(q, Y ) =
∨
{〈r, a〉 | r ∈ Q, a ∈ A ∪ A, q

a−→A r} ∨
∨
{〈s, ε〉 ∧ 〈r, ε〉 | r ∈ Q, s ∈ S1, q

T (π),s−−−−→A r} ∨
((q = q0) ∧ 〈s0, ε〉)

The priority function Acc is defined by setting Acc(s) = 1 if s ∈ Q and Acc(s) =
(Acc1 � Acc2)(s) for s ∈ S1 � S2. We set Acc(s) = 1 for all s ∈ Q since we want
to assure that the NFA A is simulated for finitely many steps only, as ψ = 〈π〉θ is a
diamond formula. We obtain [[ψ]] = [[T (ψ), p0]].

We now describe the inductive construction of A(π) and T (π) for an ICPDL pro-
gram π. If Ti = (Si, δi,Acci), i ∈ {1, 2}, are two TWAPTAs with disjoint sets of
states, in what follows we use T1 � T2 = (S1 � S2, δ1 � δ2,Acc1 �Acc2) denote their
disjoint union; it is defined in the obvious way.

If π = a ∈ A ∪ A, the NFA A(π) has two states p and q with the only transition
p
a−→ q. Hence, [[π]] = [[A(π), p, q]].

If π = ψ?, we can assume that there exists a TWAPTA T (ψ) with a state s such that
[[ψ]] = [[T (ψ), s]]. The TWAPTA T (π) is T (ψ). The NFA A(π) has two states p and

q with the only transition p
T (π),s−−−−→ q. Hence, we have [[π]] = [[A(π), p, q]] = {(u, u) |

u ∈ [[T (ψ), s]]}.



PDL with Intersection and Converse Is 2EXP-Complete 209

If π = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗, we construct A(π) by using the standard
automata constructions for union, concatenation, and Kleene-star. In case π = π1∪π2 or
π = π1◦π2, we set T (π) = T (π1)�T (π2), whereas for π = χ∗, we set T (π) = T (χ).

It remains to construct A(π1 ∩ π2) and T (π1 ∩ π2), which is the most difficult step
of the construction. Assume that the NFAs A(πi) = (Qi,→A(πi)) over the TWAPTAs
T (πi) have already been constructed, for i ∈ {1, 2}. Thus, [[A(πi), pi, qi]] = [[πi]] for
some states pi, qi ∈ Qi. A natural idea for defining an NFA for π1 ∩ π2 is to apply a
product construction to A1 and A2. A naive attempt to do this is bound to fail because
a run of A1 in T and a run of A2 in T , both starting in a tree node u and ending in a
tree node v, may proceed along different paths. More precisely, the two runs both travel
along the unique shortest from u to v, but they may make different “detours” from
this shortest path. In order to eliminate this problem and make the product construction
available, we modify A(π1) and A(π2) by admitting additional test transitions that al-
low to short-cut the mentioned detours. These modified NFAs can always travel along
the shortest path without any detours, and thus the product construction can be used.

Before we can construct A(π1 ∩ π2), we make a digression to introduce the men-
tioned modification of NFAs. Let T = (S, δ,Acc) be a TWAPTA and A = (Q,→A)
an NFA over T . Define the relation loopA ⊆ A∗ ×Q×Q as the smallest set such that:

(i) for all u ∈ A∗ and q ∈ Q we have (u, q, q) ∈ loopA,

(ii) if (ua, p′, q′) ∈ loopA, p
a−→A p

′ and q′ a−→A q, then (u, p, q) ∈ loopA,

(iii) if (u, p′, q′) ∈ loopA, p
a−→A p

′, and q′ a−→A q, then (ua, p, q) ∈ loopA,
(iv) if (u, p, r) ∈ loopA and (u, r, q) ∈ loopA, then (u, p, q) ∈ loopA, and

(v) if u ∈ [[T , s]] and p
T ,s−−→A q for s ∈ S, then (u, p, q) ∈ loopA.

Intuitively, loopA describes detours, i.e., (parts of) a run of A that start at some node in
the tree and eventually return to the very same node. It is not too difficult to prove the
following.

Lemma 5. We have (u, p, q) ∈ loopA if and only if (u, p)⇒∗A (u, q).

Since Conditions (i)–(v) can be easily translated into a TWAPTA, we obtain:

Lemma 6. There is a TWAPTA U = (S′, δ′,Acc′) with S′ = S � (Q×Q) s.t.

(i) [[U , s]] = [[T , s]] for all s ∈ S,
(ii) [[U , (p, q)]] = {u ∈ A∗ | (u, p, q) ∈ loopA} for all (p, q) ∈ Q×Q, and

(iii) |Acc′| = |Acc|.
Now define a new NFA B = (Q,→B) over the TWAPTA U , that results from A by

adding for every pair (p, q) ∈ Q × Q, the test transition p
U ,(p,q)−−−−→B q. The following

lemma shows that our modification did not damage the NFA.

Lemma 7. Let u, v ∈ A∗ and let p, q ∈ Q. Then (u, v) ∈ [[A, p, q]] iff (u, v) ∈ [[B, p, q]].

We now return to the construction of A(π1 ∩ π2) and T (π1 ∩ π2) from A(π1), A(π2),
T (π1), and T (π2). For i ∈ {1, 2}, we first construct the NFA B(πi) over the TWAPTA
U(πi) = (S′i, δ

′
i,Acc′i) as described above. Note that |S′i| = |Si| + |Qi|2. We take

T (π1 ∩ π2) = U(π1) � U(π2). The NFA A(π1 ∩ π2) is the product automaton of
B(π1) = (Q1,→B(π1)) and B(π2) = (Q2,→B(π2)), where test transitions can be
carried out asynchronously:
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– The state set of A(π1 ∩ π2) is Q1 ×Q2.
– For a ∈ A ∪ A we have (r1, r2)

a→A(π1∩π2) (r′1, r′2) if and only if r1
a→B(π1) r

′
1

and r2
a→B(π2) r

′
2.

– For s ∈ S′1 � S′2 we have the test transition (r1, r2)
T (π1∩π2),s−−−−−−−→A(π1∩π2) (r′1, r

′
2)

if and only if (i) s ∈ S′1, r2 = r′2, and r1
U(π1),s−−−−−→B(π1) r

′
1 or (ii) s ∈ S′2, r1 = r′1,

and r2
U(π2),s−−−−−→B(π1) r

′
2.

It is possible to show that [[A(π1 ∩ π2), (p1, p2), (q1, q2)]] = [[π1 ∩ π2]].This finishes the
inductive translation of ICPDL formulas and programs into automata. A careful analysis
of the constructions outlined above, allows us to inductively establish the following
bounds.

Lemma 8. For every ICPDL formula ψ and every ICPDL program π we have:

1. If T (ψ) = (S, δ,Acc), then |S| ≤ 2|ψ|
2

and |Acc| ≤ |ψ|.
2. If A(π) = (Q,→A(π)) and T (π) = (S, δ,Acc) then |Q| ≤ 2|π|, |S| ≤ 2|π|

2
, and

|Acc| ≤ |π|.

The double exponential bound in Point 1 of Lemma 8 is due to the fact that the con-
struction for dealing with program intersection blows up the size of NFAs quadratically.
In contrast, all other constructions involve only a linear blowup.

5.2 Wrapping Up

It is now easy to decideω-regular tree satisfiability in ICPDL. Let T0 be a TWAPTA over
2P-labeled A-trees and let ϕ be an ICPDL formula with prop(ϕ) ⊆ P and prog(ϕ) ⊆ A.
There is a state s of T (ϕ) such that [[T (ϕ), s]]T = [[ϕ]]T for all 2P-labeled A-trees
T . Let the TWAPTA T be the intersection of T0 and T (ϕ) (taking the intersection
of TWAPTAs is trivial an can be done in linear time), where s becomes the initial
state of T (ϕ). Clearly, L(T ) �= ∅ if and only if there exists some tree T ∈ L(T0)
with (T, ε) |= ϕ. By Lemma 8 and Theorem 3, we thus obtain a 2EXP upper bound
for ω-regular tree satisfiability in ICPDL. A matching lower bound is obtained by a
straightforward reduction of satisfiability in ICPDL in tree-shaped Kripke structures. It
was shown in [11] that this problem is 2EXP-hard.

Theorem 5. ω-regular tree satisfiability in ICPDL is 2EXP-complete.

Together with Theorem 4, this finally proves our main result Theorem 1. It is interesting
to note that the bound given in Point 1 of Lemma 8 improves to single exponential if
the intersection height (which can be defined in the obvious way) of ICPDL programs
is bounded by a constant. Thus, we actually obtain EXP-completeness for this case.

6 Negation of Atomic Programs

We consider extensions of IPDL and ICPDL with negation of programs. It is well known
that adding full program negation renders PDL undecidable [9], whereas PDL with pro-
gram negation restricted to atomic programs remains decidable and EXP-complete [13].
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In this section, we show that IPDL and hence also ICPDL become undecidable already
when extended with atomic program negation. Since intersection of programs can be
defined in terms of program union and (full) program negation, this also yields an alter-
native proof of the undecidability of PDL with full program negation.

Our proof proceeds by reduction from the undecidable tiling problem of the first
quadrant of the plane [3]. A tiling system T = (T,H, V ) consists of a finite set of tile
types T and horizontal and vertical matching relationsH,V ⊆ T × T . A solution to T
is a mapping τ : N× N→ T such that for all (x, y) ∈ N× N, we have

– if τ(x, y) = t and τ(x + 1, y) = t′, then (t, t′) ∈ H , and
– if τ(x, y) = t and τ(x, y + 1) = t′, then (t, t′) ∈ V .

The tiling problem is to decide, given a tiling system T , whether T has a solution.

We use IPDL(¬) to denote the extension of IPDL with negation of atomic programs,
which we write as ¬a (a ∈ A). The semantics of the new constructor is defined in the
obvious way, i.e., [[¬a]]K = (X×X)\[[a]]K. To reduce the tiling problem to satisfiability
in IPDL(¬), we give a translation of tiling systems T = (T,H, V ) into formulas ϕT of
IPDL(¬) such that T has a solution if and only if ϕT is satisfiable. In the formula ϕT ,
we use two atomic programs ax and ay for representing the grid N×N and we use the
elements of T as atomic propositions for representing tile types. More precisely, ϕT is
a conjunction consisting of the following conjuncts:

(a) every element of a (connected) model of ϕT represents an element of N×N and is
labelled with a unique tile type:

[(ax ∪ ay)∗]
( ∨

t∈T
t ∧

∧

t,t′∈T,t�=t′
¬(t ∧ t′)

)

(b) every element has an ax-successor and an ay-successor:

[(ax ∪ ay)∗]
(
〈ax〉true ∧ 〈ay〉true

)

(c) the programs ax and ay are confluent:

[(ax ∪ ay)∗] [(ax; ay) ∩ (ay;¬ax)]false

(d) the horizontal and vertical matching conditions are respected:

[(ax ∪ ay)∗]
( ∧

t∈T
t ⇒

(
[ax]

∨

(t,t′)∈H
t′ ∧ [ay]

∨

(t,t′)∈V
t′
))
.

Lemma 9. T has a solution if and only if ϕT is satisfiable.

We have thus established the following result.

Theorem 6. Satisfiability in IPDL(¬) is undecidable.
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Symbolic Backwards-Reachability Analysis for

Higher-Order Pushdown Systems�

Matthew Hague and C.-H. Luke Ong

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, UK, OX1 3QD

Abstract. Higher-order pushdown systems (PDSs) generalise pushdown
systems through the use of higher-order stacks, that is, a nested “stack
of stacks” structure. We further generalise higher-order PDSs to higher-
order Alternating PDSs (APDSs) and consider the backwards reachability
problem over these systems. We prove that given an order-nAPDS, the set
of configurations from which a given regular set of configurations is reach-
able is itself regular and computable in n-EXPTIME. We show that the re-
sult has several useful applications in the verification of higher-order PDSs
such as LTL model checking, alternation-free μ-calculus model checking,
and the computation of winning regions of reachability games.

1 Introduction

Pushdown automata are an extension of finite state automata. In addition to
a finite set of control states, a pushdown automaton has a stack that can be
manipulated with the usual push and pop operations. Higher-order pushdown
automata (PDA) generalise pushdown automata through the use of higher-order
stacks. Whereas a stack in the sense of a pushdown automaton is an order-one
stack — that is, a stack of characters — an order-two stack is a stack of order-
one stacks. Similarly, an order-three stack is a stack of order-two stacks, and
so on.

Higher-order PDA were originally introduced by Maslov [18] in the 1970s
as generators of (a hierarchy of) finite word languages. Higher-order pushdown
systems (PDSs) are higher-order PDA viewed as generators of infinite trees or
graphs. These systems provide a natural infinite-state model for higher-order
programs with recursive function calls and are therefore useful in software verifi-
cation. Several notable advances in recent years have sparked off a resurgence of
interest in higher-order PDA/PDSs in the Verification community. E.g. Knapik
et al. [24] have shown that the ranked trees generated by deterministic order-n
PDSs are exactly those that are generated by order-n recursion schemes satisfy-
ing the safety constraint; Carayol and Wöhrle [5] have shown that the ε-closure
of the configuration graphs of higher-order PDSs exactly constitute Caucal’s
graph hierarchy [10]. Remarkably these infinite trees and graphs have decidable
monadic second-order (MSO) theories [11,5,24].
� The full version [13] of this work is downloadable from the first author’s web page.
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These MSO decidability results, though powerful, only allow us to check that
a property holds from a given configuration. We may wish to compute the set
of configurations that satisfy a given property, especially since there may be an
infinite number of such configurations. In this paper, we consider a closely-related
problem:

Backwards Reachability : Given a set of configurations CInit, compute the
set Pre∗(CInit) of configurations that can, via any number of transitions,
reach a configuration in CInit.

This is an important verification problem in its own right, since safety properties
(i.e. undesirable program states – such as deadlock – are never reached) feature
largely in practice.

The backwards reachability problem was solved for order-one PDSs by Boua-
jjani et al. [2]. In particular, they gave a method for computing the (regular)
set of configurations Pre∗(CInit) that could reach a given regular set of configu-
rations CInit. Regular sets of configurations are represented symbolically in the
form of a finite multi-automaton. That is, a finite automaton that accepts fi-
nite words (representing stacks) with an initial state for each control state of the
PDS. A configuration is accepted if the stack (viewed as a word) is accepted from
the appropriate initial state. The set Pre∗(CInit) is computed by the repeated
addition of a number of transitions – determined by the transition relation of
the PDS – to the automaton accepting CInit, until a fixed point is reached. A
fixed point is guaranteed since no states are added and the alphabet is finite:
eventually the automaton will become saturated.

The approach was extended by Bouajjani and Meyer [1] to the case of higher-
order context-free processes, which are higher-order PDSs with a single control
state. A key innovation in their work was the introduction of a new class of (finite-
state) automata called nested store automata, which captures an intuitive notion
of regular sets of n-stores. An order-one nested store automaton is simply a finite
automaton over words. An order-n nested store automaton is a finite automaton
whose transitions are labelled by order-(n− 1) nested store automata.

Our paper is concerned with the non-trivial problem1 of extending the back-
wards reachability result of Bouajjani and Meyer to the general case of higher-
order PDSs (by taking into account a set of control states). In fact, we consider
(and solve) the backwards reachability problem for the more general case of
higher-order alternating pushdown systems (APDSs). Though slightly unwieldy,
an advantage of the alternating framework is that it conveniently lends itself
to a number of higher-order PDS verification problems. Following the work of
Cachat [22], we show that the winning region of a reachability game played
over a higher-order PDS can be computed by a reduction to the backwards
reachability problem of an appropriate APDS. We also generalise results due to
Bouajjani et al. [2] to give a method for computing the set of configurations of a
higher-order PDS that satisfy a given formula of the alternation-free μ-calculus
or a linear-time temporal logic.
1 “This does not seem to be technically trivial, and näıve extensions of our construction

lead to procedures which are not guaranteed to terminate.” [1, p. 145]
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Related Work. Prompted by the fact that the set of configurations reachable
from a given configuration of a higher-order PDS is not regular in the sense
of Bouajjani and Meyer (the stack contents cannot be represented by a finite
automaton over words), Carayol [4] has proposed an alternative definition of
regularity for higher-order stacks, which we shall call C-regularity. Our notion
of regularity coincides with that of Bouajjani and Meyer, which we shall call
BM-regularity.

A set of order-n stacks is said to be C-regular if it is constructible from the
empty n-stack by a regular sequence of order-n stack operations. Carayol shows
that C-regularity coincides with MSO definability over the canonical structure
Δn

2 associated with order-n stacks. This implies, for instance, that the winning
region of a parity game over an order-n pushdown graph is also C-regular, as it
can be defined as an MSO formula [22].

In this paper we solve the backwards reachability problem for higher-order
PDSs and apply the solution to reachability games and model-checking. In this
sense we give a weaker kind of result that uses a different notion of regularity.
Because C-regularity does not imply BM-regularity2, our result is not subsumed
by the work of Carayol. However, a detailed comparison of the two approaches
may provide a fruitful direction for further research.

The definition of higher-order PDSs may be extended to higher-order push-
down games. In the order-one case, the problem of determining whether a con-
figuration is winning for Eloise with a parity winning condition was solved by
Walukiewicz in 1996 [14]. The order-one backwards reachability algorithm of
Bouajjani et al. was adapted by Cachat to compute the winning regions of
order-one reachability and Büchi games [22]. Results for pushdown games have
been extended to a number of winning conditions [23,3,12,20,9] including parity
conditions [22,19]. In the higher-order case with a parity winning condition, a
method for deciding whether a configuration is winning has been provided by
Cachat [22].

Higher-order recursion schemes (HORSs) represent a further area of related
work. MSO decidability for trees generated by arbitrary (i.e. not necessarily
safe) HORSs has been shown by one of us [21]. A variant kind of higher-order
PDSs called collapsible pushdown automata (extending panic automata [25] or
pushdown automata with links [16] to all finite orders) has recently been shown
to be equi-expressive with HORSs for generating ranked trees [8]. These new
automata are conjectured to enrich the class of higher-order systems and provide
many new avenues of research.

2 Preliminaries

In the sequel we will introduce several kinds of alternating automata. For con-
venience, we will use a non-standard definition of alternating automata that is
equivalent to the standard definitions of Brzozowski and Leiss [15] and Chandra,
Kozen and Stockmeyer [6]. Similar definitions have been used for the analysis
2 For example (pusha)∗; push2 defines all stacks of the form [[an][an]].
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of pushdown systems by Bouajjani et al. [2] and Cachat [22]. The alternating
transition relation Δ ⊆ Q× Γ × 2Q — where Γ is a kind of alphabet and Q is
a state-set — is given in disjunctive normal form. That is, the image Δ(q, γ) of
q ∈ Q and γ ∈ Γ is a set {Q1, . . . , Qm} with Qi ∈ 2Q for i ∈ {1, . . . ,m}. When
the automaton is viewed as a game, Eloise — the existential player — chooses a
set Q ∈ Δ(q, γ); Abelard — the universal player — then chooses a state q ∈ Q.

2.1 (Alternating) Higher-Order Pushdown Systems

We begin by defining higher-order stores and their operations. We will then
define higher-order PDSs and APDSs in full.

The set CΣ1 of 1-stores over an alphabet Σ is the set of words of the form
[a1, . . . , am] with m ≥ 0 and ai ∈ Σ for all i ∈ {1, . . . ,m}, [ /∈ Σ and ] /∈ Σ. For
n > 1, CΣn = [w1, . . . , wm] with m ≥ 1 and wi ∈ CΣn−1 for all i ∈ {1, . . . ,m}.
There are three types of operations applicable to n-stores: push, pop and top.
These are defined inductively. Over a 1-store, we have (for all w ∈ Σ∗),

pushw[a1 . . . am] = [wa2 . . . am]
top1[a1 . . . am] = a1

We may define the abbreviation pop1 = pushε. When n > 1, we have

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < n
pushn[γ1 . . . γm] = [γ1γ1γ2 . . . γm]
popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < n
popn[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < n
topn[γ1 . . . γm] = γ1

Note that we assume wlog Σ ∩ N = ∅, where N is the set of natural num-
bers. Further, observe that when m = 1, popn is undefined. We define On =
{ pushw | w ∈ Σ∗ } ∪ { pushl, popl | 1 < l ≤ n }.

Definition 1. An order-n pushdown system (PDS) is a tuple (P ,D, Σ) where
P is a finite set of control states pj , D ⊆ P × Σ × On × P is a finite set of
commands d, and Σ is a finite alphabet.

A configuration of an order-n PDS is a pair 〈p, γ〉 where p ∈ P and γ is
an n-store. We have a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ D,
top1(γ) = a and γ′ = o(γ).

Definition 2. An order-n alternating pushdown system (APDS) is a tuple
(P ,D, Σ) where P is a finite set of control states pj , D ⊆ P × Σ × 2On×P

is a finite set of commands d, and Σ is a finite alphabet.
A configuration of an order-n APDS is a pair 〈p, γ〉 where p ∈ P and γ is an

n-store. We have a transition 〈p, γ〉 ↪→ C iff we have (p, a,OP ) ∈ D, top1(γ) = a,
and

C = { 〈p′, γ′〉 | (o, p′) ∈ OP ∧ γ′ = o(γ) }
∪ { 〈p,�〉 | if (o, p′) ∈ OP and o(γ) is not defined }
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The transition relation generalises to sets of configurations via the following rule:

〈p, γ〉 ↪→ C

C′ ∪ 〈p, γ〉 ↪→ C′ ∪ C 〈p, γ〉 /∈ C′

In both the alternating and the non-alternating cases, we define
∗
↪→ to be the

transitive closure of ↪→. For a set of configurations CInit we define Pre∗(CInit) as
the set of configurations 〈p, γ〉 such that 〈p, γ〉 ∗↪→ c and c ∈ CInit or 〈p, γ〉 ∗↪→ C
and C ⊆ CInit respectively.

Observe that since no transitions are possible from an “undefined” configura-
tion 〈p,�〉 we can reduce the reachability problem for higher-order PDSs to the
reachability problem over higher-order APDSs in a straightforward manner.

In the sequel, to ease the presentation, we assume n > 1. The case n = 1 was
investigated by Bouajjani et al. [2].

2.2 n-Store Multi-automata

To represent sets of configurations we will use n-store multi-automata. These are
alternating automata whose transitions are labelled by (n− 1)-store automata,
which are also alternating. A set of configurations is said to be regular if it is
accepted by an n-store multi-automaton.

Definition 3

1. A 1-store automaton is a tuple (Q, Σ,Δ, q0,Qf ) where Q is a finite set of
states, Σ is a finite alphabet, q0 is the initial state and Qf ⊆ Q is a set of
final states. Δ ⊆ Q×Σ × 2Q is a finite transition relation.

2. Let BΣ
n−1 be the (infinite) set of all (n−1)-store automata over the alphabet

Σ. An n-store automaton over the alphabet Σ is a tuple (Q, Σ,Δ, q0,Qf)
where Q is a finite set of states, q0 /∈ Qf is the initial state, Qf ⊆ Q is a set
of final states, and Δ ⊆ Q×BΣ

n−1 × 2Q is a finite transition relation.
3. An n-store multi-automaton over the alphabet Σ is a tuple

(Q, Σ,Δ, {q1, . . . , qz},Qf)

where Q is a finite set of states, Σ is a finite alphabet, qi /∈ Qf for i ∈
{1, . . . , z} are separate initial states and Qf ⊆ Q is a set of final states, and

Δ ⊆ (Q×BΣ
n−1 × 2Q) ∪ ({q1, . . . , qz} × {�} × {qεf})

is a finite transition relation where qεf ∈ Qf has no outgoing transitions.

To indicate a transition (q,B, {q1, . . . , qm}) ∈ Δ, we write,

q
B−→ {q1, . . . , qm}

Paths of the automata from a state q take the form,

q
B̃0−→ {q11 , . . . , q1m1

} B̃1−→ . . .
B̃m−→ {qm1 , . . . , qmml

}
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where transitions between configurations {qx1 , . . . , qxmx
} B̃x−→ {qx+1

1 , . . . , qx+1
mx+1

}

are such that we have qxy
By−→ Qy for all y ∈ {1, . . . ,mx} and

⋃
y∈{1,...,mx}Qy =

{qx+1
1 , . . . , qx+1

mx+1
} and

⋃
y∈{1,...,mx}{By} = B̃x. Observe that B̃0 is necessarily a

singleton set.
We will, by abuse of notation, abbreviate a run over the word w to

q
w−→ {q1, . . . , qm}

Further, when a run occurs in an automaton forming part of a sequence indexed
by i (for example, A0, A1, . . .), we may write −→i to indicate which automaton
the run belongs to.

A 1-store [a1 . . . am] is accepted by a 1-store automaton A (that is [a1 . . . am] ∈
L(A)) iff we have a run q0

a1...am−→ Q in A with Q ⊆ Qf . For a given n-store
automaton A = (Q, Σ,Δ, q0,Qf ) we define

L(A) = { [γ1 . . . γm] | q0
B̃0−→ . . .

B̃m−→ Q ∧ Q ⊆ Qf ∧ ∀0 ≤ i ≤ m.γi ∈ L(B̃i) }

where γ ∈ L(B̃) iff γ ∈ L(B) for all B ∈ B̃.
For an n-store multi-automaton A = (Q,Σ,Δ, {q1, . . . , qz},Qf ) we define

L(Aq
j

) = { [γ1 . . . γm] | qj B̃0−→ . . .
B̃m−→ Q

∧ Q ⊆ Qf ∧ ∀0 ≤ i ≤ m.γi ∈ L(B̃i) }
∪ { � | qj �−→ qεf }

L(A) = { 〈pj , γ〉 | j ∈ {1, . . . , z} ∧ γ ∈ L(Aq
j

) }

Finally, we define the automata Bal and Xa
l for all 1 ≤ l ≤ n and a ∈ Σ

and the notation qθ. Bal is the l-store automaton that accepts any l-store γ such
that top1(γ) = a. Xa

l is the (n− 1)-store automaton accepting all (n− 1)-stores
such that top1(γ) = a and topl+1(γ) = [[w′]] for some w′. That is, popl(γ) is
undefined. If θ represents a store automaton, the state qθ refers to the initial
state of the automaton represented by θ.

3 Backwards Reachability

Theorem 1. Given an n-store multi-automaton A0 accepting the set of config-
urations CInit of an order-n APDS, we can construct in n-EXPTIME (in the
size of A0) an n-store multi-automaton A∗ accepting the set Pre∗(CInit). Thus,
Pre∗(CInit) is regular.

Due to space constraints, we restrict our attention in the sequel to the order-2
case. We give a brief description of the order-n construction in Section 3.5. For
a formal treatment of the general case, we refer the reader to the full version of
this paper [13].

Fix an order-2 APDS. We begin by showing how to generate an infinite se-
quence of automata A0, A1, . . ., where A0 is such that L(A0) = CInit. This
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q1

qf

q2

B1

B2

B3

B4

d1 = (p1, a, push2, p
1)

d2 = (p1, a, pushε, p
1),

d3 = (p2, a, pushw, p
1)

d4 = (p2, a, pop2, p
1)

q1

qf

q2

G̃1
(q1,◦) = {{(a, pushε, B1)}}

G̃1
(q1,qf ) = {{Ba

1 , B1, B3}}
G̃1

(q2,◦) = {{(a, pushw, B1)}}
G̃1

(q2,q1) = {{Ba
1 }}

q1

qf

q2

G̃2
(q1,◦) =

{
{(a, pushε, B1)}, {(a, pushε, G̃

1
(q1,◦))}

}

G̃2
(q1,qf ) =

{
{Ba

1 , B1, B3}, {(a, pushε, G̃
1
(q1,qf ))},

{Ba
1 , G̃

1
(q1,qf ), B4}, {Ba

1 , G̃
1
(q1,◦), B3}

}

G̃2
(q2,◦) =

{
{(a, pushw, B1)}, {(a, pushw, G̃

1
(q1,◦))}

}

G̃2
(q2,q1) = {{Ba

1 }}
G̃2

(q2,qf ) =
{
{(a, pushw, G̃

1
(q1,qf ))}

}

Fig. 1. The automata A0, A1 and A2

sequence is increasing in the sense that L(Ai) ⊆ L(Ai+1) for all i, and sound
and complete with respect to Pre∗(CInit); that is

⋃
i≥0 L(Ai) = Pre∗(CInit). To

conclude the algorithm, we construct a single automaton A∗ such that L(A∗) =⋃
i≥0 L(Ai).
We assume wlog that all initial states in A0 have no incoming transitions and

there exist in A0 a state q∗f from which all valid 2-stores are accepted and a state
qεf ∈ Qf that has no outgoing transitions.

3.1 Example

We give an intuitive explanation of the algorithm by means of an example. Fix
the 2-state order-2 PDS and 2-store multi-automaton A0 shown in Figure 1 with
some B1, B2, B3 and B4.

We proceed via a number of iterations, generating the automata A0, A1, . . ..
We constructAi+1 fromAi to reflect an additional inverse application of the com-
mands d1, . . . , d4. Rather than manipulating order-1 store automata labelling the
edges of A0 directly, we introduce new transitions (at most one between each
pair of states q1 and q2) and label these edges with the set G̃1

(q1,q2). This set is
a recipe for the construction of an order-1 store automaton that will ultimately
label the edge. The resulting A1 is given in Figure 1 along with the contents of
the sets.

To process the command d1 we need to add all configurations of the form
〈p1, [γ1 . . . γm]〉 with top1(γ1) = a to the set of configurations accepted by A1 for



220 M. Hague and C.-H.L. Ong

each configuration 〈p1, [γ1γ1 . . . γm]〉 accepted by A0. This results in the transi-
tion from q1 to qf . The contents of G̃1

(q1,qf ) indicate that this edge must accept
the product of Ba1 , B1 and B3.

The commands d2 and d3 update the top2 stack of any configuration accepted
from q1 or q2 respectively. In both cases this updated stack must be accepted
from q1 in A0. Hence, the contents of G̃1

(q1,◦) and G̃1
(q2,◦) specify that the au-

tomaton B1 must be manipulated to produce the automaton that will label these
new transitions. Finally, d4 requires an additional top2 stack with a as its top1

element to be added to any stack accepted from q1. Thus, we introduce the
transition from q2 to q1.

To construct A2 from A1 we repeat the above procedure, taking into account
the additional transitions in A1. Observe that we do not add additional tran-
sitions between pairs of states that already have a transition labelled by a set.
Instead, each labelling set may contain several element sets. The resulting au-
tomaton is given in Figure 1.

If we were to repeat this procedure to construct A3 we would notice that
a kind of fixed point has been reached. In particular, the transition structure
of A3 will match that of A2 and each G̃3

(q,q′) will match G̃2
(q,q′) in everything

but the indices of the labels G̃1
( , ) appearing in the element sets. We may write

G̃3
(q,q′) = G̃2

(q,q′)[2/1] where the notation [2/1] indicates a substitution of the
element indices.

To complete the construction of A1 (and A2) we need to construct the au-
tomata G1

(q,q′) (and G2
(q,q′)) represented by the labels G̃1

(q,q′) (and G̃2
(q,q′)) for

the appropriate q, q′. Because these new automata will be constructed from the
automata labelling the egdes of A0 (and A1) we construct them simultaneously,
constructing a single (1-store multi-)automaton G1 (resp. G2) with an initial
state g1

(q,q′) for each G1
(q,q′). The automaton G1 is constructed through the addi-

tion of states and transitions to the disjoint union of B1, . . . , B4, B
a
1 . Similarly,

G2 is built through the addition of states and transitions to G1. This procedure
is illustrated in Figure 2. For the sake of clarity, many states and transitions
have been omitted. All transitions are labelled a.

In Figure 2, the innermost frame gives the disjoint union of the automata
B1, B3 and Ba1 . The middle frame shows an excerpt of G1. The transition from
g1
(q1,◦) is derived from the pushε command applied to B1, which behaves as a

pop command. We can then construct G1
(q1,◦) directly from G1 taking g1

(q1,◦) as
the initial state.

The outermost frame gives a partial representation of the automaton G2. The
transition shown from g2

(q1,◦) derives from the pushε command applied to G1
(q1,◦).

Ommitted from the diagram is an a-transition from g2
(q1,◦) to qB1 resulting from

the pushε command applied to B1. The branching transition from g2
(q1,qf ) derives

from the set {Ba1 , G̃1
(q1,qf ), B3} in G̃2

(q1,◦). That is, we use the power of alternation
to construct the product of the automata Ba1 ,G1

(q1,qf ) and B3.
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g2
(q1,◦) g1

(q1,◦) qB1

g2
(q1,qf ) qB3

qBa
1

Fig. 2. The automata G0, G1 and G2

· · · · · · “=”

Fig. 3. Collapsing a repetitive chain of new states

We have now constructed the automata A1 and A2. We could then repeat this
procedure to generate A3, A4, . . ., resulting in an infinite sequence of automata
that is sound and complete with respect to Pre∗(L(A0)).

To construct A∗ we observe that since a fixed point was reached at A2, the
update to each Gi to create Gi+1 will use similar recipes and hence become
repetitive. This will lead to an infinite chain with an unvarying pattern of edges.
This chain can be collapsed as shown in Figure 3.

In particular, we are no longer required to add new states to G2 to construct
Gi for i > 2. Instead, we fix the update instructions G̃2

(q,q′)[2/1] for all q, q′ and
manipulate G2 as we manipulated the order-2 structure of A0 to create A1 and
A2. We write Ĝi to distinguish these automata from the automata Gi generated
without fixing the state-set.

Because Σ and the state-set are finite (and remain unchanged), this procedure
will reach another fixed point Ĝ∗ when the transition relation is saturated and
Ĝi = Ĝi+1. The automaton A∗ has the transition structure that became fixed at
A2 labelled with automata derived from the fixed point Ĝ∗. This automaton will
be sound and complete with respect to Pre∗(L(A0)).

3.2 Preliminaries

To aid in the construction of an automaton representingPre∗(CInit), we introduce
a new kind of transition to the 2-store automata. These new transitions are intro-
duced during the processing of the APDS commands. Furthermore, they are la-
belled with place-holders that will eventually be converted into 1-store automata.
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Between any state q1 and set of states Q2 we add at most one transition. We
associate this transition with an identifier G̃(q1,Q2). To describe our algorithm
we will define sequences of automata, indexed by i. The identifier G̃i(q1,Q2) is
associated with a set that acts as a recipe for updating the 1-store automaton
described by G̃i−1

(q1,Q2)
or creating a new automaton if G̃i−1

(q1,Q2)
does not exist.

Ultimately, the constructed 1-store automaton will label the new transition.
The sets are in a kind of disjunctive normal form. A set {S1, . . . , Sm} rep-

resents an automaton that accepts the union of the languages accepted by the
automata described by S1, . . . , Sm. Each set S ∈ {S1, . . . , Sm} corresponds to a
possible effect of a command d at order-1 of the automaton. The automaton de-
scribed by S accepts the intersection of languages described by its elements. An
element that is an automaton B refers directly to the automaton B. Similarly,
an identifier G̃i(q1,Q2)

refers to its corresponding automaton. Finally, an element
of the form (a, pushw, θ) refers to an automaton capturing the effect of applying
the inverse of the pushw command to the stacks accepted by the automaton
represented by θ; moreover, the top1 character of the stacks accepted by the new
automaton will be a. It is a consequence of construction that for any S added
during the algorithm, if (a, pushw, θ) ∈ S and (a′, pushw′, θ′) ∈ S then a = a′.

Formally, to each G̃i(q1,Q2) we attach a subset of

2B ∪ G̃
i−1 ∪ (Σ ×O1 × (B ∪ G̃i−1))

where B is the union of the set of all 1-store automata occurring in A0 and
all automata of the form Ba1 or Xa

1 . Further, we denote the set of all order-1
identifiers G̃i(q,Q) in Ai as G̃i. The sets B and O1 are finite by definition. If the

state-set at order-1 is fixed, there is a finite bound on the size of the set G̃i for
any i.

Given G̃i, we build the automata for all G̃i(q1,Q2)
∈ G̃i simultaneously. That

is, we create a single automaton Gi associated with the set G̃i. This automaton
has a state gi(q1,Q2)

for each G̃i(q1,Q2)
∈ G̃i. The automaton Gi(q1,Q2)

labelling the
transition q1 −→i Q2 is the automaton Gi with gi(q1,Q2) as its initial state.

The automaton Gi is built inductively. We set G0 to be the disjoint union
of all automata in B. We define Gi+1 = TG̃i+1(Gi) where TG̃j (Gi) is given in
Definition 4. In Section 3.4 it will be seen that j is not always (i+ 1).

Definition 4. Given an automaton Gi = (Qi, Σ,Δi, ,Qf) and a set of identi-
fiers G̃j1 , we define,

Gi+1 = TG̃j (Gi) = (Qi+1, Σ,Δi+1, ,Qf)

where Qi+1 = Qi ∪ { gj(q1,Q2) | G̃
j
(q1,Q2) ∈ G̃j }, Δi+1 = Δold ∪Δnew ∪Δi, and,

Δold = { gj(q1,Q2)

a−→ Q | (gj−1
(q1,Q2)

a−→ Q) ∈ Δi }
Δnew =

{
gj(q1,Q2)

b−→ Q | G̃j(q1,Q2) ∈ G̃j and b ∈ Σ and (1)
}



Symbolic Backwards-Reachability Analysis for Higher-Order PDSs 223

where (1) requires {α1, . . . , αr} ∈ G̃j(q1,Q2)
, Q = Q1 ∪ . . . ∪ Qr and for each

t ∈ {1, . . . , r} we have,

– If αt = θ, then (qθ b−→ Qt) ∈ Δi.
– If αt = (a, pushw, θ), then b = a and qθ

w−→ Qt is a run of Gi.

3.3 Constructing the Sequence A0, A1, . . .

For a given order-n APDS with commands D we define Ai+1 = TD(Ai) where
the operation TD follows.

Definition 5. Given an automaton Ai = (Q, Σ,Δi, {q1, . . . , qz},Qf) and a set
of commands D, we define,

Ai+1 = TD(Ai) = (Q, Σ,Δi+1, {q1, . . . , qz},Qf )

where Δi+1 is given below.
We begin by defining the set of labels G̃i+1. This set contains labels on tran-

sitions present in Ai, and labels on transitions derived from D. That is,

G̃i+1 =

{

G̃i+1
(q,Q) | (q

G̃i
(q,Q)−→ Q) ∈ Δi

}

∪
{
G̃i+1

(qj ,Q) | (2)
}

The contents of the sets G̃i+1
(q,Q) ∈ G̃i+1 are defined G̃i+1

(qj ,Q) = { S | (2) } where
(2) requires (pj , a, {(o1, pk1), . . . , (om, pkm)}) ∈ D, Q = Q1 ∪ . . . ∪ Qm, S =
S1 ∪ . . . ∪ Sm and for each t ∈ {1, . . . ,m} we have,

– If ot = push2, then St = {Ba1} ∪ θ̃1 ∪ θ̃2 and there exists a path qkt
θ̃1−→i

Q′ θ̃2−→i Qt in Ai.
– If ot = pop2, then St = {Ba1} and Qt = {qkt}. Or, if qj �−→i {qεf} exists in
Ai, we may have St = {Ba1} and Qt = {qεf}.

– If ot = pushw then St = {(a, pushw, θ)} and there exists a transition qkt
θ−→i

Qt in Ai.

Finally, we give the transition relation Δi+1.

Δi+1 =

{

q
B−→ Q | (q B−→ Q) ∈ Δi

and B ∈ B

}

∪
{

q
G̃i+1

(q,Q)−→ Q | G̃i+1
(q,Q) ∈ G̃i+1

}

We can construct an automaton whose transitions are 1-store automata by re-
placing each set G̃i+1

(q,Q) with the automaton Gi+1
(q,Q) which is Gi+1 with initial

state gi+1
(q,Q), where Gi+1 = TG̃i+1(Gi). Note that Gi is assumed by induction.

By repeated applications of TD we construct the sequence A0, A1, . . . which is
sound and complete with respect to Pre∗(CInit).

Property 1. For any configuration 〈pj , γ〉 it is the case that γ ∈ L(Aq
j

i ) for some
i iff 〈pj , γ〉 ∈ Pre∗(CInit).
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3.4 Constructing the Automaton A∗

We need to construct a finite representation of the sequence A0, A1, . . . in a
finite amount of time. To do this we will construct an automaton A∗ such that
L(A∗) =

⋃
i≥0 L(Ai). We begin by introducing some notation and a notion of

subset modulo i for the sets G̃i(q1,Q2)
.

Definition 6. Given θ ∈ B ∪ G̃i for some i, let

θ[j/i] =

{
θ if θ ∈ B
Gj(q1,Q2)

if θ = Gi(q1,Q2)
∈ G̃i

For a set S we define S[j/i] such that, θ ∈ S iff we have θ[j/i] ∈ S[j/i], and
(a, pushw, θ) ∈ S iff we have (a, pushw, θ[j/i]) ∈ S[j/i].We extend the notation
[j/i] point-wise to nested sets of sets structures. Finally, we define,

1. G̃i(q1,Q2)
� G̃j(q1,Q2) iff for each S ∈ G̃i(q1,Q2) we have S[j−1/i−1] ∈ G̃j(q1,Q2).

2. G̃i � G̃j iff for all G̃i(q1,Q2) ∈ G̃i we have G̃j(q1,Q2)
∈ G̃j and G̃i(q1,Q2)

�
G̃j(q1,Q2)

.

Writing A � B to mean A � B and B � A, we now show that the sets labelling
the transitions of A0, A1, . . . reach a fixed point. Once a fixed point G̃i � G̃i1
has been reached, we can stop adding new states during the construction of
Gi1 ,Gi1+1, . . ..

Property 2. There exists i1 > 0 such that G̃i � G̃i1 for all i ≥ i1.

Proof. (Sketch) Since the order-1 state-set in Ai remains constant and we add
at most one transition between any state q1 and set of states Q2, there is some
i1 where no more transitions are added at order-2. That G̃i � G̃i1 for all i ≥ i1
follows since the contents of G̃i(q1,Q2)

and G̃i1(q1,Q2)
are derived from the same

transition structure.

Lemma 1. Suppose we have a sequence of automata G0,G1, . . . and associated
sets G̃0, G̃1, . . .. Further, suppose there exists an i1 such that for all i ≥ i1 we
have G̃i � G̃i1 . We can define a sequence of automata Ĝi1 , Ĝi1+1, . . . such that
the state-set in Ĝi remains constant. The following are equivalent for all w,

1. The run gi1(q1,Q2)

w−→i Q with Q ⊆ Qf exists in Ĝi for some i.

2. The run gi
′

(q1,Q2)

w−→i′ Q
′ with Q′ ⊆ Qf exists in Gi′ for some i′.

We use Ĝi+1 = TG̃i1 [i1/i1−1](Ĝi) to construct the sequence Ĝi1 , Ĝi1+1, . . .. Intu-
itively, since the transitions from the states introduced to define Gi for i ≥ i1
are derived from similar sets, we can compress the subsequent repetition into
a single set of new states as shown in Figure 3. Since the state-set of this new
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sequence does not change and the alphabet Σ is finite, the transition structure
will become saturated.

Property 3. For a sequence of automata G0,G1, . . . such that the state-set of Gi
remains constant there exists i0 > 0 such that Gi = Gi0 for all i ≥ i0.

Thus, we have the following algorithm for constructing A∗:

1. Given A0, iterate Ai+1 = TD(Ai) until the fixed point Ai1 is reached.
2. Iterate Gi+1 = TG̃i1

l [i1/i1−1]
(Gi) to generate the fixed point Gi0 from Gi1 .

3. Construct A∗ by labelling the transitions of Ai1 with automata derived
from Gi0 .

Property 4. There exists an automaton A∗ which is sound and complete with
respect to A0, A1, . . . and hence computes the set Pre∗(CInit).

3.5 The General Case

We may generalise our algorithm to order-n for all n by extending Definition 4 to
l-store automata using similar techniques to those used in Definition 5. Termina-
tion is reached through a cascading of fixed points. As we fixed the state-set at
order-1 in the order-2 case, we may fix the state-set at order-(n−1) in the order-n
case. We may then generalise Property 2 and Lemma 1 to find a sequence of fixed
points in, . . . , i0, from which A∗ can be constructed. For a complete description
of this procedure, we refer the reader to the long version of this paper [13].

We claim our algorithm runs in n-EXPTIME. Intuitively, when the state-set
Q is fixed at order-1 of the store automaton, we add at most O(2|Q|) transi-
tions (since we never remove states, it is this final stage that dominates the
complexity). At orders l > 1 we add at most O(2|Q|) new transitions, which
exponentially increases the state-set at order-(l− 1). Hence, the algorithm runs
in n-EXPTIME.

4 Applications

We give a brief description of a number of applications of our result:

– Reachability Games. Given an order-n pushdown reachability game with a
regular set of goal configurations R, we can calculate the winning region
(which is regular) for the existential player in n-EXPTIME.

– Linear-Time Model Checking. Given an order-n PDS (P ,D, Σ) and a formula
φ of an ω-regular logic, we can calculate in (n + 2)-EXPTIME the set of
configurations C such that every run from each c ∈ C satisfies φ.

– The Alternation-Free μ-Calculus. Given an order-n PDS (P ,D, Σ) and a
formula φ of the alternation-free μ-calculus, we can compute the regular set
of configurations satisfying φ in ((|φ| · n) + 1)-EXPTIME.
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5 Conclusion

Given an automaton representation of a regular set of higher-order APDS config-
urations CInit, we have shown that the set Pre∗(CInit) is regular and computable
via automata-theoretic methods. This builds upon previous work on pushdown
systems [2] and higher-order context-free processes [1]. The main innovation of
this generalisation is the careful management of a complex automaton construc-
tion. This allows us to identify a sequence of cascading fixed points, resulting in
a terminating algorithm.

Our result has many applications. We have shown that it can be used to pro-
vide a solution to the model checking problem for linear-time temporal logics
and the alternation-free μ-calculus. In particular we compute the set of config-
urations of a higher-order PDS satisfying a given constraint. We also show that
the winning regions can be computed for a reachability game played over an
higher-order PDS.

There are several possible extensions to this work. Firstly, we intend to com-
plete the complexity analysis with corresponding hardness results. Although this
result is widely accepted to follow from the work of Engelfriet [7], we intend to
give an alternative proof in the long version of this paper. Secondly, we plan
to investigate the applications of this work to higher-order pushdown games
with more general winning conditions. In his PhD thesis, Cachat adapts the
reachability algorithm of Bouajjani et al. [2] to calculate the winning regions in
Büchi games over pushdown processes [22]. It is likely that our work will permit
similar extensions. Finally, we intend to generalise this work to higher-order col-
lapsible pushdown automata, which can be used to study higher-order recursion
schemes [25,8]. This may provide the first steps into the study of games over
these structures.

Acknowledgments. We thank Olivier Serre and Arnaud Carayol for helpful
discussions and the anonymous referees for their detailed comments.
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A Distribution Law for CCS and

a New Congruence Result for the π-Calculus

Daniel Hirschkoff and Damien Pous

LIP – ENS Lyon, CNRS, INRIA, UCBL, France

Abstract. We give an axiomatisation of strong bisimilarity on a small
fragment of CCS that does not feature the sum operator. This axiomati-
sation is then used to derive congruence of strong bisimilarity in the finite
π-calculus in absence of sum. To our knowledge, this is the only nontriv-
ial subcalculus of the π-calculus that includes the full output prefix and
for which strong bisimilarity is a congruence.

Introduction

In this paper, we study strong bisimilarity on two process calculi. We first focus
on microCCS (μCCS), the very restricted fragment of CCS that only features
prefix and parallel composition. Our main result on μCCS is that adding the
following distribution law

η.(P | η.P | . . . | η.P ) = η.P | η.P | . . . | η.P

to the laws of an abelian monoid for parallel composition yields a complete
axiomatisation of strong bisimilarity (in the law above, η is a CCS prefix, of the
form a or a, and P is any CCS process – the same number of copies of P appear
on both sides of the equation).

The distribution law is not new: it is mentioned – among other ‘mixed equa-
tions’ relating prefixed terms and parallel compositions – in a study of bisimilar-
ity on normed PA processes [8]. In our setting, this equality can be oriented from
left to right to rewrite processes into normal forms, which intuitively exhibit as
much concurrency as possible. Strong bisimilarity (∼) between processes is then
equivalent to equality of their normal forms. This rewriting phase allows us to
actually compute unique decompositions of processes into prime processes, in the
sense of [10]: a process P is prime if P is not bisimilar to the inactive process 0
and if P ∼ Q |R implies Q ∼ 0 or R ∼ 0.

The distribution law is an equational schema, corresponding to an infinite
family of axioms, of the form η.(P | (η.P )k) = (η.P )k+1, for k ≥ 1 (where Qk

denotes the k-fold parallel composition of process Q). We show that although
our setting is rather simple, there exists no finite axiomatisation of ∼ on μCCS.

We then move to the study of strong bisimilarity in the π-calculus. Because of
the presence of the input prefix, and of the related phenomenon of name-passing,
bisimilarity is more complex in the π-calculus than in CCS. In particular, both

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 228–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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early and late bisimilarity, that differ in their treatment of name substitution,
fail to be congruences in the full π-calculus.

There exist subcalculi of the π-calculus for which strong bisimilarity is a con-
gruence (we discuss these in Section 5). When this is the case, this equivalence
coincides with ground bisimilarity (∼g), which allows one to consider only one
fresh name when inspecting an input transition, instead of the usual quantifi-
cation involving all free names of the process. Congruence of strong bisimilarity
is hence an important property: not only is it necessary in order to reason in
a compositional way, but it also helps making bisimulation proofs simpler, by
reducing the size of case analyses.

In the full π-calculus, in order to get congruence, one has to work with San-
giorgi’s open bisimilarity [12], which has a more involved definition than the
early and late variants. Tools like the Mobility Workbench [14], for instance,
have adopted this equivalence on processes.

It is known [13] that bisimilarity in the π-calculus fails to be a congruence as
soon as we have prefix, parallel composition, restriction and replication. In this
work, we focus on the finite, sum-free π-calculus, that we call π0. We rely on the
axiomatisation of strong bisimilarity on μCCS to prove that ground bisimilar-
ity (∼g) is closed under substitutions in π0, i.e., that whenever P ∼g Q, then
Pσ ∼g Qσ for any substitution σ. Closure under substitution of ground bisim-
ilarity entails that on π0, ground, early, late and open bisimilarities coincide,
and are congruences. The problem of congruence of ∼g on π0 is mentioned as
an open question in [13, Chapter 5], and is known since at least 1998 [2]. To our
knowledge, this is the first congruence result for a subcalculus of the π-calculus
that includes the full output prefix (see Section 5 for a discussion on this).

At the heart of our proof of congruence is a notion that we call mutual desyn-
chronisation, and that corresponds to the existence of processes T, T12, T21 such
that T

η1−→ η2−→ T12 and T
η2−→ η1−→ T21, for two distinct actions η1 and η2, and with

T12 ∼ T21. We additionally require in the two sequences of transitions from T to
T12 and T21 respectively that the second prefix being fired should occur under
the first prefix in T . In other words, in such a situation, the process T behaves
as if the two actions η1, η2 were offered concurrently, but the simultaneous firing
of these actions can only be emulated by triggering consecutive prefixes.

Using our analysis of strong bisimilarity on μCCS, we show that mutual desyn-
chronisations do not exist in μCCS. This is essentially due to the fact that our
axiomatisation of ∼ on μCCS does not allow one to relate two distinct prefixes
when performed concurrently and sequentially. When moving to the π-calculus,
it turns out that substitution closure of ∼g amounts to observing absence of
mutual desynchronisations in π0. We exploit a transfer property, that extracts
a bisimilarity proof in μCCS from a bisimilarity proof in π0, to relate the two
calculi and to show that mutual desynchronisations do not exist in π0, yielding
congruence of ∼g.

Paper outline. We introduce μCCS and the distribution law in Section 1. Sec-
tion 2 is devoted to the characterisation of ∼ on μCCS using normal forms.
In Section 3, we prove that no finite axiomatisation of ∼ on μCCS exists.
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Section 4 presents the proof of our congruence result in the π-calculus, and
we give concluding remarks in Section 5.

1 MicroCCS Processes and Normal Forms

We consider an infinite set N of names, ranged over with a, b . . . . We define on
top of N the set of processes of μCCS, the finite, public, sum-free CCS calculus,
ranged over using P,Q,R . . . , as follows:

η ::= a
∣
∣ a , P ::= 0

∣
∣ η.P

∣
∣ P1 |P2 .

0 is the nil process. η ranges over visible actions and co-actions, called inter-
actions, and we let η stand for the co-action associated to η (we have η = η).
For k > 0, we write P k for the parallel composition of k copies of P , and we
write

∏
i∈I Pi for the parallel composition of all processes Pi for i ∈ I. It can

be noted that our syntax does not include a construction of the form τ.P — see
Remark 2.3 below.

Structural congruence, written ≡, is defined as the smallest congruence satis-
fying the following laws:

(C1) P |Q ≡ Q |P (C2) P | (Q |R) ≡ (P |Q) |R (C3) P |0 ≡ P

We introduce a labelled transition system (LTS) for μCCS. Actions labelling
transitions, ranged over with μ, are either interactions, or a special silent action,
written τ .

Definition 1.1 (Operational semantics and behavioural equivalence).
The LTS for μCCS is given by the following rules:

η.P
η−→ P

P
η−→ P ′ Q

η−→ Q′

P |Q τ−→ P ′ |Q′
P

μ−→ P ′

P |Q μ−→ P ′ |Q
P

μ−→ P ′

Q |P μ−→ Q |P ′

A bisimulation is a symmetrical relation R between processes such that whenever
P R Q and P

μ−→ P ′, there exists Q′ such that Q
μ−→ Q′ and P ′ R Q′.

Bisimilarity, written ∼, is the union of all bisimulations.

Definition 1.2 (Size). Given P , #(P ) (called the size of P ) is defined by:

#(0) def= 0 #(P1 |P2) def= #(P1) + #(P2) #(η.P ) def= 1 + #(P ) .

Lemma 1.3. P ≡ Q implies P ∼ Q which in turn implies #(P ) = #(Q).

Proof. The first implication follows by proving that ≡ is a bisimulation.
Suppose then by contradiction that there exist P,Q such that P ∼ Q and

#(P ) < #(Q); and choose such P with minimal size. Q has at least one prefix:
Q

η−→ Q′ and we get P
η−→ P ′ with P ′ ∼ Q′. Necessarily, we must have #(P ′) <

#(Q′) and #(P ′) < #(P ) which contradicts the minimality hypothesis. ��
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Definition 1.4 (Distribution law). The distribution law is given by the fol-
lowing equation, where the same number of copies of P appears on both sides:

η.(P | η.P | . . . | η.P ) = η.P | η.P | . . . | η.P .

We shall use this equality, oriented from left to right, to rewrite processes. We
write P � P ′ when there exist P1, P2 such that P ≡ P1, P2 ≡ P ′ and P2

is obtained from P1 by replacing a sub-term of the form of the left-hand side
process with the right-hand side process.

Remark 1.1 (On the distribution law and PA). Among the studies about prop-
erties of ∼ in process algebras that include parallel composition (see [1] for a
recent survey on axiomatisations), some works focus on calculi where parallel
composition is treated as a primitive operator (as opposed to being expressible
using sum or other constructs like the left merge operator). As mentioned above,
particularly relevant to this work is [8], where Hirshfeld and Jerrum “develop a
structure theory for PA that completely classifies the situations in which a se-
quential composition of two processes can be bisimilar to a parallel composition”.
[8] establishes decidability of ∼ for normed PA processes: in that setting, the
formal analogue of the distribution law (Def. 1.4) holds with η and P being two
processes — the ‘dot’ operator is a general form of sequential composition. This
equality is valid in [8] whenever η is a ‘monomorphic process’, meaning that η
can only reduce to 0 (which corresponds to μCCS), or to η itself. [6] presents a
finite axiomatisation of PA that exploits the operators of sum and left merge.

Lemma 1.5. The relation � is strongly normalising and confluent.

Proof. If P � P ′ then the weight of P ′ (defined as sum of the depths of all
prefixes occuring in P ′) is strictly smaller than the weight of P , whence the
strong normalisation. We then remark that � is locally confluent, and conclude
with Newman’s Lemma. ��

Thus, for any process P , � defines a normal form unique up to ≡, that will be
denoted by n(P ). We let A,B, . . . range over normal forms.

The following lemma states that � preserves bisimilarity:

Lemma 1.6. If P � P ′, then P ∼ P ′. For any P , P ∼ n(P ).

Proof. The relation (� ∪ (�)−1 ∪ ≡) is a bisimulation. ��

2 Characterisation of Bisimilarity in MicroCCS

Our characterisation of ∼ on μCCS makes use of the notion of decomposition
into prime processes, defined as follows:

Definition 2.1. A process P is prime if P 
∼ 0 and P ∼ P1 |P2 implies P1 ∼ 0
or P2 ∼ 0.

When P ∼ P1 | . . . |Pn where the Pis are prime, we shall call P1 | . . . |Pn a
prime decomposition of P .



232 D. Hirschkoff and D. Pous

Proposition 2.2 (Unique decomposition). Any process admits a prime de-
composition which is unique up to bisimilarity: if P1 | . . . |Pn and Q1 | . . . |Qm
are two prime decompositions of the same process, then n = m and Pi ∼ Qi for
all i ∈ [1..n], up to a permutation of the indices.

Proof. Similar to the proof of [11, Theorem 4.3.1]: the case of μCCS is not
explicitly treated in that work, but the proof can be adapted rather easily. ��

An immediate consequence of the above result is the following property:

Corollary 2.3 (Cancellation). For all P,Q,R, P |R ∼ Q |R implies P ∼ Q.

Note that this is not true in presence of replication: a | !a ∼ 0 | !a, but a 
∼ 0.
The characterisation of ∼ using the distribution law follows from the observa-

tion that if a normal form is a prefixed process, then it is prime. This idea is used
in the proof of Lemma 2.5. We first establish a technical result, that essentially
exploits the same argument as the proof of Theorem 4.2 in [7].

Lemma 2.4. If η.P ∼ Q |Q′, with Q,Q′ 
∼ 0, then there exist A and k > 1 such
that η.P ∼ (η.A)k and η.A is a normal form.

Proof. By Lemma 1.6, we have η.P ∼ n(Q |Q′). Furthermore, we have that
n(Q |Q′) ≡

∏
i≤k ηi.Ai, where k > 1 and the processes ηi.Ai are in normal form.

Since the η prefix must be triggered to answer any challenge from the right
hand side, we have ηi = η and P ∼ Ai |

∏
l �=i η.Al for all i ≤ k. In particular,

when i 
= j, we have P ∼ Ai | η.Aj |
∏
l �∈{i,j} η.Al ∼ η.Ai |Aj |

∏
l �∈{i,j} η.Al and

hence, by Corollary 2.3, Ai | η.Aj ∼ η.Ai |Aj . By reasoning on the sizes of the
parallel components in the prime decompositions of these two terms, we conclude
that η.Ai ∼ η.Aj for all i, j ≤ k.

Hence, we have η.P ∼ (η.A1)k with k > 1 and η.A1 is a normal form. ��

Lemma 2.5. Let A,B be two normal forms, A ∼ B implies A ≡ B.

Proof. We show by induction on n that for all A with #(A) = n, we have

(i) if A is a prefixed process, then A is prime;
(ii) for any B, A ∼ B implies A ≡ B.

The case n = 0 is immediate. Suppose that the property holds for all i < n, with
n ≥ 1.

(i) We write A = η.A′, and suppose by contradiction A ∼ P1 |P2 with P1, P2 
∼
0. By Lemma 2.4, we have A ∼ (η.B)k with k > 1 and η.B in normal form.
By triggering the prefix on the left hand side, we have A′ ∼ B | (η.B)k−1.
It follows by induction that A′ ≡ B | (η.B)k−1 (using property (ii)), and
hence A ≡ η.(B | (η.B)k−1, which is in contradiction with the fact that A
is in normal form.

(ii) Suppose now A ∼ B.
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• IfA is a prefixed process,B is prime by the previous point (#(B) = #(A)
by Lemma 1.3). Necessarily, A ≡ η.A′ and B ≡ η.B′ with A′ ∼ B′. By
induction, this entails A′ ≡ B′, and A ≡ B.
• Otherwise, A = η1.A1 | . . . | ηk.Ak with k > 1, and we know by induction

(property (i)) that ηi.Ai is prime for all i ≤ k. Similarly, we have B =
η′1.B1 | . . . | η′l.Bl with η′i.Bi prime for all i ≤ l.
By Proposition 2.2, k = m and ηi.Ai ∼ η′i.Bi (up to a permutation of
the indices), which gives η′i = ηi and Ai ∼ Bi for all i ≤ k. By induction,
we deduce Ai ≡ Bi for all i, which finally implies A ≡ B. ��

Lemmas 1.6 and 2.5 allow us to deduce the following result.

Theorem 2.6. Let P,Q be two μCCS processes. Then P ∼ Q iff n(P ) ≡ n(Q).

Remark 2.1 (Unique decomposition of processes). Our proof relies on unique
decomposition of processes (Prop. 2.2), that first appeared in [10]. Unique de-
composition has been established for a variety of process algebras, and used as
a way to prove decidability of behavioural equivalence and to give complexity
bounds for the associated decision procedure ([9,3] cite relevant references).

In the present study, beyond the existence of a unique decomposition, we are
interested in a syntactic characterisation of ∼ (which will in particular allow
us to derive Lemma 4.6 below). In this sense, our work is close to [5], where
the notion of maximally parallel process in CCS (with choice) is studied. [5]
defines a rewriting process through which maximally parallel normal forms can
be computed, and shows that in the case of μCCS, such normal forms are unique.
However, no syntactical characterisation of the set of normal forms is presented,
and such a characterisation cannot be directly deduced from the (rather involved)
definition of the rewriting process for full CCS.

We instead restrict ourselves to μCCS from the start, and rely explicitly on
the distribution law in order to ‘extract’ prime components of processes.

Remark 2.2 (Closure under substitutions). In (full) CCS, two strongly bisimilar
processes need not remain bisimilar whenever we apply a substitution that re-
places names with names. The standard counterexample is given by a.b+ b.a ∼
a | b: when we replace b with a, we obtain two processes that are distinguished
by ∼, since the latter can perform a τ transition that cannot be matched by the
former. This irregularity is the basis of the standard counterexample showing
that strong bisimilarity is not a congruence in the π-calculus.

In μCCS, on the other hand, ∼ is closed under substitutions: the intuitive
reason is that two processes related by an instance of the distribution law remain
equivalent when a substitution is applied (we can show in particular that for any
substitution σ, n(Pσ) ≡ n(n(P )σ)). This is not the case for the expansion law,
of which the counterexample above is an instance.

Remark 2.3 (τ prefix and weak bisimilarity). We do not address weak bisimilar-
ity in the present work. In μCCS, strong and weak bisimilarity coincide, i.e., the
internal transitions of processes are completely determined by the visible actions
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(interactions). When including τ prefixes in the syntax, it can be proved that
adding the law τ.P = P is enough to characterise weak bisimilarity. The τ prefix
is usually absent in the π-calculus, to which we shall move in Section 4. Since
some results on CCS will be transferred to the π-calculus, we did not include
this construct in μCCS.

3 Nonexistence of a Finite Axiomatisation

We letD stand for the set of equations consisting of the three axioms of structural
congruence (C1, C2, C3), and the infinite family of distribution axioms

(Dk) : η.(P | (η.P )k) = (η.P )k+1, k ≥ 1 .

We let Dk stand for the finite restriction of D where only the first k distribution
axioms are included ((Di)1≤i≤k). We shall write E � P = Q whenever P = Q
can be derived in equational logic using a given set E of axioms, and E 
� P = Q
when this is not the case.

(Dk)k≥1 forms an equational schema for the distribution law, and Theorem 2.6
states that D is a complete axiomatisation of strong bisimilarity on μCCS. Us-
ing a rather classical approach (i.e., establishing ω-completeness and proving
compactness, see [1]), this leads to the nonexistence of a finite axiomatisation of
∼ on μCCS. The lemma below provides the central technical property satisfied
by the (Dk)k≥1 which is necessary to derive Theorem 3.2, that says that D is
intrinsically infinite.

Lemma 3.1. Let a be a name. For any k, there exists n s.t. Dk 
� a.an = an+1.

Remember that an stands for the n-fold parallel composition of a.0, so that the
above equality is an instance of axiom (Dn).

Proof. Let n be a number strictly greater than k such that n+ 1 is prime, and
let θ(P,Q) denote the predicate: “P ∼ Q ∼ an+1, P ≡ a.P ′, and Q ≡ Q1 |Q2

with Q1, Q2 
≡ 0”. Suppose now that Dk � a.an = an+1, and consider the
shortest proof of Dk � P = Q for some processes P,Q such that either θ(P,Q)
or θ(Q,P ). Since θ(a.an, an+1) holds, such a minimal proof does exist. We reason
about the last rule used in the derivation of this proof in equational logic. For
syntactic reasons, this cannot be reflexivity, a contextual rule, nor one of the
structural congruence axioms. It can be neither symmetry nor transitivity, since
otherwise this would give a shorter proof satisfying θ. The only possibility is
thus the use of one of the distribution axioms, say Di with 1 ≤ i ≤ k and
an+1 ∼ Q ≡ (a.Q′)i+1. By Lemma 1.3, since #(an+1) = n+1, i+1 has to divide
n + 1. This is contradictory, because we have 2 ≤ i + 1 ≤ k + 1 < n + 1, and
n+ 1 is prime. ��
Theorem 3.2 (No finite axiomatisation of ∼). For any finite set of axioms
E, there exist processes P and Q such that P ∼ Q but E 
� P = Q.

Proof. Standard, by proving that D is ω-complete and then using the Compact-
ness Theorem (see [1]). ��
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4 A New Congruence Result for the π-Calculus

4.1 The Finite, Sum-Free π-Calculus

π-calculus processes are built from an infinite set Nπ of names, ranged over using
a, b . . . ,m, n . . . , p, q . . . , x, y . . . , according to the following grammar:

φ ::= m(x)
∣
∣ mn , P ::= 0

∣
∣ φ.P

∣
∣ P1 |P2

∣
∣ (νp)P .

The input prefix m(x) binds name x in the continuation process, and so does
name restriction (νn) in the restricted process. A name that is not bound is
said to be free, and we let fn(P ) stand for the free names of P . We assume
that any process that we manipulate satisfies a Barendregt convention: every
bound name is distinct from the other bound and free names of the process. We
shall use a, b, c to range over free names of processes, p, q, r (resp. x, y) to range
over names bound by restriction (resp. by input), and m,n to range over any
name, free or bound (note that these naming conventions are used in the above
grammar). Structural congruence on π0, written ≡, is the smallest congruence
that is an equivalence relation, contains α-equivalence, and satisfies the following
laws:
P |0 ≡ P P | (Q |R) ≡ (P |Q) |R P |Q ≡ Q |P (νp)0 ≡ 0

(νp)(νq)P ≡ (νq)(νp)P P | (νp)Q ≡ (νp)(P |Q) if p /∈ fn(P )

We let P [n/x] stand for the capture avoiding substitution of name x with name
n in P . We use σ to range over substitutions in π0 (that simultaneously replace
several names).

Definition 4.1 (Late operational semantics and ground bisimilarity).
The late operational semantics of π0 is given by a transition relation whose set
of labels is defined by:

μ ::= a(x)
∣
∣ ab

∣
∣ a(p)

∣
∣ τ .

Names x and p are said to be bound in actions a(x) and a(p) respectively, and
other names are free. We use bn(μ) (resp. fn(μ)) to denote the set of bound
(resp. free) names of action μ.

The late transition relation, written −→π, is given by the following rules (sym-
metrical versions of the rules involving parallel composition are omitted):

φ.P
φ−→π P

P
a(x)−−−→π P

′ Q
ab−→π Q

′

P |Q τ−→π P
′[b/x] |Q′

P
ab−→π P

′

(νb)P
a(b)−−→π P

′
a �= b P

a(x)−−−→π P
′ Q

a(p)−−→π Q
′

P |Q τ−→π (νp)(P ′[p/x] |Q′)

P
μ−→π P

′

P |Q μ−→π P
′ |Q

bn(μ) ∩ fn(Q)=∅ P
μ−→π P

′

(νp)P
μ−→π (νp)P ′

p /∈ fn(μ)
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A ground bisimulation is a symmetric relation R between processes such that
whenever P R Q and P

μ−→π P
′, there exists Q′ s.t. Q

μ−→π Q
′ and P ′ R Q′.

Ground bisimilarity, written ∼g, is the union of all ground bisimulations.

Note that we do not respect the convention on names in the rule to infer a bound
output, precisely because we are transforming a free name (b) into a bound name.

Lemma 4.2. Suppose that Pσ
μ−→π P

′.

1. If μ is ab, a(p) or a(x), then P
μ′
−→π P

′′ with μ′σ = μ and P ′′σ = P ′.
2. If μ = τ then one of the three following properties hold, where the input and

output actions are offered concurrently by P in the last two cases.

(a) P
τ−→π P

′′ and P ′′σ = P ′,

(b) P
bc−→π

a(x)−−−→π P
′′ where σ(a) = σ(b) and P ′′[c/x]σ ∼ P ′,

(c) P
b(p)−−→π

a(x)−−−→π P
′′ where σ(a) = σ(b) and ((νp)P ′′[p/x])σ ∼ P ′.

Proof. Similar to the proof of Lemma 1.4.13 in [13], where the early transition
semantics is treated. ��

4.2 Mutual Desynchronisations

We now introduce the notion of mutual desynchronisation in μCCS, which is
defined as the existence of processes obeying certain conditions in the calculus.
We shall see that because of τ synchronisations, the absence of mutual desyn-
chronisations is related to substitution closure of ∼.

Definition 4.3 (Mutual desynchronisation in μCCS). We say that there
exists a mutual desynchronisation in μCCS whenever there are two prefixes
η1, η2, and five μCCS processes P, P ′, Q, Q′, R such that η1 
= η2, P

η1−→ P ′,
Q

η2−→ Q′ and η2.P |Q′ |R ∼ P ′ | η1.Q |R.

The notion of mutual desynchronisation is not specific to μCCS. As explained in
the introduction, it corresponds to a situation where three processes T, T12, T21

satisfy:

– T
η1−→ η2−→ T12 and T

η2−→ η1−→ T21, where the second prefix being triggered
occurs under the first one in both sequences of transitions.

– η1 
= η2 and T12 ∼ T21.

The proofs of Lemmas 4.9 and 4.10 will expose analogous situations in π0.

Definition 4.4. We define, for any μCCS process P and prefix η, the contri-
bution of P at η, written sη(P ), by

sη(0) def= 0 sη(η′.P ) def= 0 if η 
= η′

sη(P1 |P2) def= sη(P1) + sη(P2) sη(η.P ) def= #(η.P )
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Intuitively, sη(P ) is the total size of the parallel components of P that start with
the prefix η.

Lemma 4.5. P ∼ Q implies sη(P ) = sη(Q) for all η.

Proof. Follows from Theorem 2.6 and the observation that the distribution law
preserves the contribution of a process at a given interaction prefix. ��
Lemma 4.6 (No mutual desynchronisation). There exists no mutual desyn-
chronisation in μCCS.

Proof. Suppose by contradiction that there are processes such that P
η1−→ P ′,

Q
η2−→ Q′ and η2.P |Q′ |R ∼ P ′ | η1.Q |R.
By the cancellation property (Corollary 2.3), we have η2.P |Q′ ∼ P ′ | η1.Q,

hence for all η, sη(η2.P |Q′) = sη(P ′ | η1.Q) (Lemma 4.5).
Since sη1(η2.P |Q′) = sη1(Q′) ≤ #(Q′) and sη1(P ′ | η1.Q)) ≥ sη1(η1.Q) =

#(Q′) + 2, by taking η = η1 we finally get #(Q′) ≥ #(Q′) + 2. ��
This result will be used to show that a situation corresponding to a mutual
desynchronisation cannot arise in π0. Notice that the proof depends in an essen-
tial way on Lemma 4.5, which in turn relies on the axiomatisation of ∼ in μCCS
(Theorem 2.6).

In what follows, we fix two distinct names a and b, that will occur free in the
processes we shall consider. The definitions and results below will depend on a
and b, but we avoid making this dependency explicit, in order to ease readability.
Names a and b will be fixed in the proof of Lemma 4.11.

Definition 4.7 (Erasing a π0 process). Given a π0 process P , we define the
erasing of P , written E(P ), as follows:

E(P1 |P2) def= E(P1) | E(P2) E((νp)P ) def= E(P ) E(0) def= 0

E(a(x).P ) def= a.E(P ) E(m(x).P ) def= 0 if m 
= a

E(bn.P ) def= b.E(P ) E(mn.P ) def= 0 if m 
= b

Note that a and b play different roles in the definition of E(·).
It is immediate from the definition that E(P ) is a μCCS process whose only

prefixes are a and b. Intuitively, E(P ) only exhibits the interactions of P at a (in
input) and b (in output) that are not guarded by interactions on other names.

Lemma 4.8 (Transitions of E(P )). Consider a π0 process P . We have:

– If P
a(x)−−−→π P

′, then E(P ) a−→ E(P ′).

– If P bc−→π P
′ or P

b(p)−−→π P
′, then E(P ) b−→ E(P ′).

– Conversely, if E(P ) a−→ P0, then there exist x and P ′ such that P0 = E(P ′)

and P
a(x)−−−→π P ′. Similarly, if E(P ) b−→ P0, there exist c, p, P ′ such that

P0 = E(P ′) and either P bc−→π P
′ or P

b(p)−−→π P
′.

Proof. Simple reasoning on the LTSs of μCCS and π0. ��
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Proposition 4.1 (Transfer). If P ∼g Q in π0, then E(P ) ∼ E(Q) in μCCS.

Proof. We reason by induction on the size of P (defined as the number of prefixes
in P ). Consider a transition of E(P ); as observed above, it can only be a transition
along a or a transition along b.

Suppose E(P ) a−→ P0. By Lemma 4.8, P
a(x)−−−→π P

′ and P0 = E(P ′). Since P ∼g

Q, Q
a(x)−−−→π Q

′ for some Q′ such that P ′ ∼g Q
′. By induction, the latter relation

gives E(P ′) ∼ E(Q′), and Q
a(x)−−−→π Q

′ gives by Lemma 4.8 E(Q) a−→ E(Q′).

The case E(P ) b−→ P0 is treated similarly: by Lemma 4.8, there are two cases,
according to whether P does a free output or a bound output. Reasoning like
above allows us to conclude in both cases. ��

We can now present our central technical result about π0, which comes in two
lemmas.

Lemma 4.9. If Q ∼g (νp̃)(a(x).P1 | bc.P2 |P3), then there exist some Q1, Q2,
Q3, q̃, such that Q ≡ (ν q̃)(a(x).Q1 | bc.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3).

Proof. Let P = (νp̃)(a(x).P1 | bc.P2 |P3) and P ′ = (νp̃)(P1 |P2 |P3).
Note that by our conventions on notations, c /∈ p̃.
Since Q ∼g P and P can perform two transitions along a(x) and bc respec-

tively, Q can also perform these transitions, which gives
Q ≡ (ν q̃)(a(x).Q1 | bc.Q2 |Q3) for some q̃, Q1, Q2, Q3,

the first (resp. second) component exhibiting the prefix that is triggered to an-
swer the challenge on a(x) (resp. bc).

Consider now the challenge P bc−→π
a(x)−−−→π P

′, to which Q answers by perform-

ing Q
bc−→π

a(x)−−−→π Qba, with P ′ ∼g Qba. If Qba = (ν q̃)(Q1 |Q2 |Q3), that is, if
Q triggers the prefixes on top of its first and second components, then we are
done. Similarly, if Q triggers a prefix in Q3 to answer the second challenge, say
Q3 = a(x).Q4 |Q5, we can set Q′1 = a(x).Q4 and Q′3 = Q1 |Q5, and the lemma
is proved.

The case that remains to be analysed is when Q2
a(x)−−−→π Q′2 and Qba =

(ν q̃)(a(x).Q1 |Q′2 |Q3) ∼g (νp̃)(P1 |P2 |P3).

We then consider the challenge where P fires its two topmost prefixes a(x)

and bc in the other sequence, namely P
a(x)−−−→π

bc−→π P
′. By hypothesis, Q triggers

the prefix of its first component for the first transition. To perform the second
transition, Q can fire the prefix bc either in its second or third component, in
which case, as above, we are done, or, and this is the last possibility, the prefix
bc occurs in Q1. This means Qab = (ν q̃)(Q′1 | bc.Q2 |Q3) ∼g (νp̃)(P1 |P2 |P3),

with Q1
bc−→π Q

′
1.
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To sum up, we have Qab = (ν q̃)(Q′1 | bc.Q2 |Q3) ∼g (ν q̃)(a(x).Q1 |Q′2 |Q3) =

Qba, with Q1
bc−→π Q

′
1 and Q2

a(x)−−−→π Q
′
2: this resembles the mutual desynchro-

nisation of Definition 4.3, translated into the π-calculus.
Indeed, we can construct a mutual desynchronisation in μCCS: Qab ∼g Qba

implies E(Qab) ∼ E(Qba) by Prop. 4.1, and Q1
bc−→π Q′1 (resp. Q2

a(x)−−−→π Q′2)

implies by Lemma 4.8 E(Q1) b−→ E(Q′1) (resp. E(Q2) a−→ E(Q′2)). Finally, using
Lemma 4.6, we obtain a contradiction, which concludes our proof. ��

Lemma 4.10. If Q ∼g (νp, p̃)(a(x).P1 | bp.P2 |P3), then there exist some Q1,
Q2, Q3, such that Q ≡ (νp, q̃)(a(x).Q1 | bp.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3).

Proof (Hint). The proof follows the same lines as for the previous lemma. The
only difference is when analysing the transitions that lead to Qab: to perform
the second transition, Q can either extrude the name called p in the equality
Q ≡ (νp, q̃)(a(x).Q1 | bp.Q2 |Q3), or otherwise Q can be α-converted in order to
extrude another name. In the case where Q chooses to extrude a different name,
we can suppose without loss of generality that the necessary α-conversion is a
swapping between name p and a name q1 ∈ q̃, which brings us back to the case
where name p is the one being extruded.

The presence of a bound output introduces some notational complications
when expressing Qab, but basically it does not affect the proof w.r.t. the proof
of Lemma 4.9, because the function E(·) is not sensitive to name permutations
that do not involve a or b. ��

4.3 Congruence

Theorem 4.11 (Closure of ∼g under substitution). If P ∼g Q then for
any substitution σ, Pσ ∼g Qσ.

Proof. We prove that the relationR def= {(Pσ,Qσ) | P ∼g Q} is a ground bisimu-
lation. We consider P , Q such that P ∼g Q and suppose Pσ

μ−→π P0. We examine
the transitions of P that make it possible for Pσ to do a μ-transition to P0.

According to Lemma 4.2, there are two possibilities. The first possibility cor-
responds to the situation where μ comes from an action that P can perform,

i.e., P
μ′
−→π P ′ for some μ′, with P ′σ = P0 and μ′σ = μ (cases 1 and 2a in

Lemma 4.2). Since P ∼g Q, Q
μ′
−→π Q

′ and P ′ ∼g Q
′ for some Q′. We can prove

that Qσ
μ−→ Q′σ, and since P ′ ∼g Q

′ we have (P ′σ,Q′σ) ∈ R.
The second possibility (which corresponds to the difficult case) is given by

μ = τ , where the synchronisation in P ′ has been made possible by the applica-
tion of σ. There are in turn two cases, corresponding to whether the synchro-

nisation involves a free or a bound name. In the former case, P
a(x)−−−→π P

′ and

P
bc−→π P

′′ for some a, x, b, c, P ′, P ′′. This entails P ≡ (νp̃)(a(x).P1 | bc.P2 |P3)
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for some p̃, P1, P2, P3, and, since P ∼g Q, we conclude by Lemma 4.9 that
Q ≡ (ν q̃)(a(x).Q1 | bc.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3) .

By definition of R, this equivalence implies that we can apply any substitution
to these two processes to yield processes related by R, and in particular [c/x]σ,
which gives:

((νp̃)(P1 |P2 |P3))[c/x]σ R ((ν q̃)(Q1 |Q2 |Q3))[c/x]σ .

Using the Barendregt convention hypothesis, this amounts to

P0 ≡ ((νp̃)(P1[c/x] |P2 |P3))σ R ((ν q̃)(Q1[c/x] |Q2 |Q3))σ def= Q0 .

We can then conclude by checking that Qσ τ−→π Q0.
We reason similarly for the case where the synchronisation involves the trans-

mission of a bound name, using Lemma 4.10 instead of Lemma 4.9. We remark
that Lemma 4.10 gives (νp̃)(P1 |P2 |P3) ∼g (ν q̃)(Q1 |Q2 |Q3), and in this case
Pσ

τ−→π (νp, p̃)(P1[p/x] |P2 |P3)σ (resp. Qσ τ−→π (νp, q̃)(Q1[p/x] |Q2 |Q3)σ). In
order to be able to add the restriction on p to the terms given by Lemma 4.10,
we rely on the fact that ∼g is preserved by restriction: P ∼g Q implies (νp)P ∼g

(νp)Q for any P,Q, p. We can then reason as above to conclude. ��

Corollary 4.12 (Congruence of bisimilarity in π0). In π0, ground, early
and late bisimilarity coincide and are congruences.

Proof. By a standard argument (see [13]): since ∼g is closed under substitution,
∼g is an open bisimulation. ��

It is known (see [13]) that adding either replication or sum to π0 yields a calculus
where strong bisimilarity fails to be a congruence.

5 Conclusion

We have presented an axiomatisation of strong bisimilarity on a small subcalcu-
lus of CCS, and a new congruence result for the π-calculus.

Technically, the notion of mutual desynchronisation is related to substitution
closure of strong bisimilarity, as soon as substitutions can create new interactions
by identifying two names.

We have shown in Section 4 that there exists no mutual desynchronisation
in π0, and that ∼g is a congruence. In (full) CCS, mutual desynchronisations
exist, a simple example being given by a.b+b.a. The latter process is bisimilar to
a | b, but the equality fails to hold when b is replaced with a. The same reasoning
holds for the π-calculus with choice. It hence appears that in finite calculi, mutual
desynchronisations give rise to counterexamples to substitution closure of strong
bisimilarity. The situation is less clear when infinite behaviours can be expressed.
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For instance, in the extension of μCCS with replication, the process !a | !b is
bisimilar to P

def= !a.b | !b.a. Process P leads to a mutual desynchronisation:

we have P
a−→ b−→ ≡ P

b−→ a−→ ≡ P . We do not know at present whether ∼ is
substitution-closed in this extension of μCCS (we may remark that the two
aforementioned processes remain bisimilar when b is replaced with a).

Some subcalculi of the π-calculus where strong bisimilarity is a congruence
are obtained by restricting the output prefix [13]. In the asynchronous π-calculus
(Aπ), mutual desynchronisations do not appear, basically because the output
action is not a prefix. Strong bisimilarity is a congruence on Aπ. In the private
π-calculus (Pπ), since only private names are emitted, no substitution generated
by a synchronisation can identify two previously distinct names. Hence, although
mutual desynchronisations exist in Pπ (due to the presence of the sum operator),
strong bisimilarity is not substitution closed, but is a congruence. Indeed, to
obtain the latter property, we only need to consider the particular substitutions
at work in Pπ, which cannot identify two names.

The question of substitution closure can also be raised in the framework of lo-
cation sensitive behavioural equivalences such as distributed bisimilarity (see [4]).
Without having a formal proof for this claim, we expect this equivalence to be
substitution closed on restriction-free CCS. We believe this should be the case be-
cause in absence of restriction, distributed bisimilarity is discriminating enough
to analyse the maximum degree of parallelism in processes (in particular, the
expansion law is not valid for location sensitive equivalences).

Regarding future extensions of this work, we would like to study whether our
approach can be adapted to analyse weak bisimilarity in π0 (as mentioned in
Remark 2.3, strong and weak bisimilarity coincide in μCCS). Another interesting
direction, as hinted above, would be to study strong bisimilarity on infinite,
restriction-free calculi (in CCS and the π-calculus).
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Abstract. ATL is a temporal logic geared towards the specification and
verification of properties in multi-agents systems. It allows to reason on
the existence of strategies for coalitions of agents in order to enforce a
given property. We prove that the standard definition of ATL (built on
modalities “Next”, “Always” and “Until”) has to be completed in order
to express the duals of its modalities: it is necessary to add the modality
“Release”. We then precisely characterize the complexity of ATL model-
checking when the number of agents is not fixed. We prove that it is
ΔP

2- and ΔP
3-complete, depending on the underlying multi-agent model

(ATS and CGS resp.). We also prove that ATL+ model-checking is ΔP
3-

complete over both models, even with a fixed number of agents.

1 Introduction

Model checking. Temporal logics were proposed for the specification of reactive
systems almost thirty years ago [16]. They have been widely studied and suc-
cessfully used in many situations, especially for model checking —the automatic
verification that a finite-state model of a system satisfies a temporal logic spec-
ification. Two flavors of temporal logics have mainly been studied: linear-time
temporal logics, e.g. LTL [16], which expresses properties on the possible execu-
tions of the model; and branching-time temporal logics, such as CTL [7,17], which
can express requirements on states (which may have several possible futures) of
the model.

Alternating-time temporal logic. Over the last ten years, a new flavor of temporal
logics has been defined: alternating-time temporal logics, e.g. ATL [2,3]. ATL is
a fundamental logic for verifying properties in synchronous multi-agent systems,
in which several agents can concurrently influence the behavior of the system.
This is particularly interesting for modeling control problems. In that setting, it
is not only interesting to know if something can arrive or will arrive, as can be
expressed in CTL or LTL, but rather if some agent(s) can control the evolution
of the system in order to enforce a given property.

The logic ATL can precisely express this kind of properties, and can for in-
stance state that “there is a strategy for a coalition A of agents in order to
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eventually reach an accepting state, whatever the other agents do”. ATL is an
extension of CTL, its formulae are built on atomic propositions and boolean
combinators, and (following the seminal papers [2,3]) on modalities 〈〈A〉〉Xϕ
(coalition A has a strategy to immediately enter a state satisfying ϕ), 〈〈A〉〉Gϕ
(coalition A can force the system to always satisfy ϕ) and 〈〈A〉〉ϕUψ (coalitionA
has a strategy to enforce ϕUψ).

Multi-agent models. While linear- and branching-time temporal logics are inter-
preted on Kripke structure, alternating-time temporal logics are interpreted on
models that incorporate the notion of multiple agents. Two kinds of synchronous
multi-agent models have been proposed for ATL in the literature. First Alternat-
ing Transition Systems (ATSs)[2] have been defined: in any location of an ATS,
each agent chooses one move, i.e., a subset of locations (the list of possible moves
is defined explicitly in the model) in which he would like the execution to go
to. When all the agents have made their choice, the intersection of their choices
is required to contain one single location, in which the execution enters. In the
second family of models, called Concurrent Game Structures (CGSs) [3], each
of the n agents has a finite number of possible moves (numbered with integers),
and, in each location, an n-ary transition function indicates the state to which
the execution goes.

Our contributions. While in LTL and CTL, the dual of “Until” modality can be
expressed as a disjunction of “Always” and “Until”, we prove that it is not the
case in ATL. In other words, ATL, as defined in [2,3], is not as expressive as one
could expect (while it is known that adding the dual of “Until” does not increase
the complexity of the verification problems [5,9]).

We also precisely characterize the complexity of the model checking problem.
The original works about ATL provide model-checking algorithms in time O(m ·
l), where m is the number of transitions in the model, and l is the size of
the formula [2,3], thus in PTIME. However, contrary to Kripke structures, the
number of transitions in a CGS or in an ATS is not quadratic in the number
of states [3], and might even be exponential in the number of agents. PTIME-
completeness thus only holds for ATS when the number of agents is bounded, and
it is shown in [11,12] that the problem is strictly1 harder otherwise, namely NP-
hard on ATS and ΣP

2 -hard on CGSs where the transition function is encoded as
a boolean function. We prove that it is in fact ΔP

2 -complete and ΔP
3 -complete,

resp., correcting wrong algorithms in [11,12] (the problem lies in the way the
algorithms handle negations). We also show that ATL+ is ΔP

3 -complete on both
ATSs and CGSs, even when the number of agents is fixed, extending a result
of [18]. Finally we study translations between ATS and CGS.

Related works. In [2,3] ATL has been proposed and defined over ATS and CGS.
In [10] expressiveness issues are considered for ATL∗ and ATL. Complexity of
1 We adopt the classical hypothesis that the polynomial-time hierarchy does not col-

lapse, and that PTIME �= NP. We refer to [15] for the definitions about complexity
classes, especially about oracle Turing machines and the polynomial-time hierarchy.
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satisfiability is addressed in [9,19]. Complexity results about model checking (for
ATL, ATL+, ATL∗) can be found in [3,18]. Regarding control and game theory,
many papers have focused on this wide area; we refer to [20] for a survey, and
to its numerous references for a complete overview.

Plan of the paper. Section 2 contains the formal definitions that are used in the
sequel. Section 3 explains our expressiveness result, and Section 4 deals with the
model-checking algorithms. Due to lack of space, some proofs are omitted in this
article, but can be found in [13].

2 Definitions

2.1 Concurrent Game Structures and Alternating Transition
Systems

Definition 1. A Concurrent Game Structure ( CGS for short) C is a 6-tuple
(Agt, Loc,AP, Lab,Mov,Edg) s.t:
– Agt = {A1, ..., Ak} is a finite set of agents (or players);
– Loc and AP are two finite sets of locations and atomic propositions, resp.;
– Lab : Loc → 2AP is a function labeling each location by the set of atomic

propositions that hold for that location;
– Mov : Loc × Agt → P(N) � {∅} defines the (finite) set of possible moves of

each agent in each location.
– Edg : Loc × N

k → Loc, where k = |Agt|, is a (partial) function defining the
transition table. With each location and each set of moves of the agents, it
associates the resulting location.

The intended behaviour is as follows [3]: in a given location �, each player Ai
chooses one possible move mAi in Mov(�, Ai) and the successor location is given
by Edg(�,mA1 , ...,mAk

). We write Next(�) for the set of all possible successor
locations from �, and Next(�, Aj ,m) for the restriction of Next(�) to locations
reachable from � when player Aj makes the move m.

In the original works about ATL [2], the logic was interpreted on ATSs, which
are transition systems slightly different from CGSs:

Definition 2. An Alternating Transition System ( ATS for short) A is a 5-tuple
(Agt, Loc,AP, Lab,Mov) where:
– Agt, Loc, AP and Lab have the same meaning as in CGSs;
– Mov : Loc×Agt→ P(P(Loc)) associate with each location � and each agent a

the set of possible moves, each move being a subset of Loc. For each location �,
it is required that, for any Qi ∈ Mov(�, Ai),

⋂
i≤k Qi be a singleton.

The intuition is as follows: in a location �, once all the agents have chosen their
moves (i.e., a subset of locations), the execution goes to the (only) state that
belongs to all the sets chosen by the players. Again Next(�) (resp. Next(�, Aj ,m))
denotes the set of all possible successor locations (resp. the set of possible suc-
cessor locations when player Aj chooses the move m).

We prove in Section 4.2 that both models have the same expressiveness
(w.r.t. alternating bisimilarity [4]).
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2.2 Strategy, Outcomes of a Strategy

Let S be a CGS or an ATS. A computation of S is an infinite sequence ρ =
�0�1 · · · of locations such that for any i, �i+1 ∈ Next(�i). We can use the stan-
dard notions of suffix and prefix for these computations; ρ[i] denotes the i-th
location �i. A strategy for a player Ai ∈ Agt is a function fAi that maps any
finite prefix of a computation to a possible move for Ai2. A strategy is state-based
(or memoryless) if it only depends on the current state (i.e., fAi(�0 · · · �m) =
fAi(�m)).

A strategy induces a set of computations from � —called the outcomes of fAi

from � and denoted3 OutS(�, fAi)— that player Ai can enforce: �0�1�2 · · · ∈
OutS(�, fAi) iff � = �0 and for any i we have �i+1 ∈ Next(�i, Ai, fAi(�0 · · · �i)).
Let A ⊆ Agt be a coalition. A strategy for A is a tuple FA containing one
strategy for every player in A: FA = {fAi|Ai ∈ A}. The outcomes of FA from a
location � contains the computations enforced by the strategies in FA: �0�1 · · · ∈
OutS(�, FA) s.t. � = �0 and for any i, �i+1 ∈

⋂
Ai∈A Next(�i, Ai, fAi(�0 · · · �i)).

The set of strategies for A is denoted3 StratS(A). Finally OutS(�, ∅) represents
the set of all computations from �.

2.3 The Logic ATL and Some Extensions

Again, we follow the definitions of [3]:

Definition 3. The syntax of ATL is defined by the following grammar:

ATL � ϕs, ψs ::= 	 | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp
ϕp ::= Xϕs | Gϕs | ϕsUψs.

where p ranges over the set AP and A over the subsets of Agt.

In addition, we use standard abbreviations like ⊥, F , etc. ATL formulae are in-
terpreted over states of a game structure S. The semantics of the main modalities
is defined as follows3:

� |=S 〈〈A〉〉ϕp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(�, FA). ρ |=S ϕp,
ρ |=S Xϕs iff ρ[1] |=S ϕs,
ρ |=S Gϕs iff ∀i. ρ[i] |=S ϕs,

ρ |=S ϕsUψs iff ∃i. ρ[i] |=S ψs and ∀0 ≤ j < i. ρ[j] |=S ϕs.

It is well-known that, for the logic ATL, it is sufficient to restrict to state-based
strategies (i.e., 〈〈A〉〉ϕp is satisfied iff there is a state-based strategy all of whose
outcomes satisfy ϕp) [3,18].

Note that 〈〈∅〉〉ϕp corresponds to the CTL formula Aϕp (i.e., universal quan-
tification over all computations issued from the current state), while 〈〈Agt〉〉ϕp
2 I.e., fAi(�0 · · · �m) ∈ Mov(�m, Ai).
3 We might omit to mention S when it is clear from the context.
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�0

p
�1

¬p
�′1

¬p
�′2

p
�2

〈1.1〉

〈1.2〉〈2.1〉

〈2.2〉

Fig. 1. A CGS that is not determined

Loc = {�0, �1, �2, �′1, �′2}

Mov(�0, A1) = {{�1, �′1}, {�2, �′2}}
Mov(�0, A2) = {{�1, �′2}, {�2, �′1}}

with

(
Lab(�1) = Lab(�2) = {p}
Lab(�′1) = Lab(�′2) = ∅

Fig. 2. An ATS that is not determined

corresponds to existential quantification Eϕp. Note, however, that ¬ 〈〈A〉〉ϕp
is generally not equivalent to 〈〈Agt � A〉〉 ¬ϕp [3,9]. Fig. 1 displays a (graph-
ical representation of a) 2-player CGS for which, in �0, both ¬ 〈〈A1〉〉X p and
¬ 〈〈A2〉〉 ¬X p hold. In such a representation, a transition is labeled with 〈m1.m2〉
when it correspond to move m1 of player A1 and to move m2 of player A2. Fig. 2
represents an (alternating-bisimilar) ATS with the same properties.

Duality is a fundamental concept in modal and temporal logics: for instance,
the dual of modality U, often denoted by R and read release, is defined by

ϕsRψs
def≡ ¬((¬ϕs) U (¬ψs)). Dual modalities allow, for instance, to put nega-

tions inner inside the formula, which is often an important property when ma-
nipulating formulas. In LTL, modality R can be expressed using only U and G:

ϕRψ ≡ Gψ ∨ ψU (ϕ ∧ ψ). (1)

In the same way, it is well known that CTL can be defined using only modalities
EX, EG and EU, and that we have

EϕRψ ≡ EGψ ∨ EψU (ϕ ∧ ψ) AϕRψ ≡ ¬E(¬ϕ) U (¬ψ).

We prove in the sequel that modality R cannot be expressed in ATL, as defined
in Definition 3. We thus define the following two extensions of ATL:

Definition 4. We define ATLR and ATL+ with the following syntax:

ATLR � ϕs, ψs ::= 	 | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp
ϕp ::= Xϕs | ϕsUψs | ϕsRψs,

ATL+ � ϕs, ψs ::= 	 | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp
ϕp, ψp ::= ¬ϕp | ϕp ∨ ψp | Xϕs | ϕsUψs | ϕsRψs.

where p ranges over the set AP and A over the subsets of Agt.

Given a formula ϕ in one of the logics we have defined, the size of ϕ, denoted
by |ϕ|, is the size of the tree representing that formula. The DAG-size of ϕ is
the size of the directed acyclic graph representing that formula (i.e., sharing
common subformulas).
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3 〈〈A〉〉 (a R b) Cannot Be Expressed in ATL

This section is devoted to the expressiveness of ATL. We prove:

Theorem 5. There is no ATL formula equivalent to Φ = 〈〈A〉〉 (aR b).

The proof of Theorem 5 is based on techniques similar to those used for proving
expressiveness results for temporal logics like CTL or ECTL [8]: we build two
families of models (si)i∈N and (s′i)i∈N s.t. (1) si �|= Φ, (2) s′i |= Φ for any i, and
(3) si and s′i satisfy the same ATL formula of size less than i. Theorem 5 is a
direct consequence of the existence of such families of models. In order to simplify
the presentation, the theorem is proved for formula4 Φ = 〈〈A〉〉 (bR (a ∨ b)).

The models are described by one single inductive CGS 5 C, involving only
two players. It is depicted on Fig. 3. A label 〈α.β〉 on a transition indicates that

a
ai

a
si−1

a
ai−1

a
s1

a
a1

bbi bb1

a
si

a
s′i

a
s′i−1

a
s′1

¬a,¬b
s0〈3.1〉 〈3.1〉 〈3.1〉

〈3.1〉,〈4.2〉 〈3.1〉,〈4.2〉 〈3.1〉,〈4.2〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈1.1〉 〈1.1〉

〈1.1〉

〈4.1〉

〈1.1〉

〈4.1〉

〈1.2〉,〈1.3〉
〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉
〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉,〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉,〈2.1〉,〈3.2〉,〈3.3〉

Fig. 3. The CGS C, with states si and s′i on the left

this transition corresponds to move α of player A1 and to move β of player A2.
In that CGS, states si and s′i only differ in that player A1 has a fourth possible
move in s′i. This ensures that, from state s′i (for any i), player A1 has a strategy
(namely, he should always play 4) for enforcing aW b. But this is not the case
from state si: by induction on i, one can prove si �|= 〈〈A1〉〉 aW b. The base case
is trivial. Now assume the property holds for i: from si+1, any strategy for A1

starts with a move in {1, 2, 3} and for any of these choices, player A2 can choose
a move (2, 1, and 2, resp.) that enforces the next state to be si where by i.h.,
A1 has no strategy for aW b.

We now prove that si and s′i satisfy the same “small” formulae. First, we have
the following equivalences:

Lemma 6. For any i > 0, for any ψ ∈ ATL with |ψ| ≤ i:

bi |= ψ iff bi+1 |= ψ si |= ψ iff si+1 |= ψ s′i |= ψ iff s′i+1 |= ψ

4 This formula can also be written 〈〈A〉〉aW b, where W is the “weak until” modality.
5 Given the translation from CGS to ATS (see Sec. 4.2), the result also holds for ATSs.
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Lemma 7. ∀i > 0, ∀ψ ∈ ATL with |ψ| ≤ i: si |= ψ iff s′i |= ψ.

Proof. The proof proceeds by induction on i, and on the structure of the for-
mula ψ. The case i = 1 is trivial, since s1 and s′1 carry the same atomic proposi-
tions. For the induction step, dealing with CTL modalities (〈〈∅〉〉 and 〈〈A1, A2〉〉)
is also straightforward, then we just consider 〈〈A1〉〉 and 〈〈A2〉〉 modalities.

First we consider 〈〈A1〉〉 modalities. It is well-known that we can restrict to
state-based strategies in this setting. If player A1 has a strategy in si to enforce
something, then he can follow the same strategy from s′i. Conversely, if player A1

has a strategy in s′i to enforce some property, two cases may arise: either the
strategy consists in playing move 1, 2 or 3, and it can be mimicked from si. Or
the strategy consists in playing move 4 and we distinguish three cases:

– ψ = 〈〈A1〉〉Xψ1: that move 4 is a winning strategy entails that s′i, ai and bi
must satisfy ψ1. Then si (by i.h. on the formula) and si−1 (by Lemma 6)
both satisfy ψ1. Playing move 1 (or 3) in si ensures that the next state will
satisfy ψ1.

– ψ = 〈〈A1〉〉Gψ1: by playing move 4, the game could end up in si−1 (via bi),
and in ai and s′i. Thus si−1 |= ψ, and in particular ψ1. By i.h., si |= ψ1,
and playing move 1 (or 3) in si, and then mimicking the original strategy
(from s′i), enforces Gψ1.

– ψ = 〈〈A1〉〉ψ1 Uψ2: a strategy starting with move 4 implies s′i |= ψ2 (the
game could stay in s′i for ever). Then si |= ψ2 by i.h., and the result follows.

We now turn to 〈〈A2〉〉 modalities: clearly if 〈〈A2〉〉ψ1 holds in s′i, it also holds
in si. Conversely, if player A2 has a (state-based) strategy to enforce some prop-
erty in si: If it consists in playing either 1 or 3, then the same strategy also works
in s′i. Now if the strategy starts with move 2, then playing move 3 in s′i has the
same effect, and thus enforces the same property. �

Remark 1. ATL and ATLR have the same distinguishing power as the fragment
of ATL involving only the 〈〈 · 〉〉X modality (see proof of Theorem 6 in [4]).
This means that we cannot exhibit two models M and M ′ s.t. (1) M |= Φ,
(2) M ′ �|= Φ, and (3) M and M ′ satisfy the same ATL formula.

Though ATL+ would not contain the “release” modality in its syntax, it can
express it, and is thus strictly more expressive than ATL. However, as for CTL
and CTL+, it is possible to translate ATL+ into ATLR [10]. Of course, such a
translation induces at least an exponential blow-up in the size of the formulae
since it is already the case when translating CTL+ into CTL [21,1]. Finally note
that the standard model-checking algorithm for ATL easily extends to ATLR (and
that Mocha [5] handles ATLR formulae). In the same way, the axiomatization
and satisfiability results of [9] can be extended to ATLR (as mentioned in the
conclusion of [9]).

Turn-based games. In [3], a restriction of CGS —the turn-based considered.
In any location of these models (named TB-CGS hereafter), only one player has
several moves (the other players have only one possible choice). Such models have
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the property of determinedness (if the objectives are Borel-definable, which is
the case for ATL+): given a set of playersA, either there is a strategy for A to win
some objective Φ, or there is a strategy for other players (Agt\A) to enforce ¬Φ.
In such systems, modality R can be expressed as follows: 〈〈A〉〉ϕRψ ≡TB-CGS

¬ 〈〈Agt\A〉〉 (¬ϕ) U (¬ψ).

4 Complexity of ATL Model-Checking

In this section, we establish the precise complexity of ATL model-checking. All
the complexity results below are stated for ATL but they are also true for ATLR.

Model-checking issues have been addressed in the seminal papers about ATL,
on both ATSs [2] and CGSs [3]. The time complexity is shown to be in O(m · l),
where m is the size of the transition table and l is the size of the formula. The
authors then claim that the model-checking problem is in PTIME (and obviously,
PTIME-complete). However, it is well-known (and already explained in [2,3]) that
the size m of the transition table may be exponential in the number of agents.
Thus, when the transition table is not given explicitly (as is the case for ATS),
the algorithm requires in fact exponential time.

Before proving that this problem is indeed not in PTIME, we define the model
of implicit CGSs, with a succinct representation of the transition table [11].
Besides the theoretical aspect, it may be quite useful in practice since it allows
to not explicitly describe the full transition table.

4.1 Explicit and Implicit CGSs

We distinguish between two classes of CGSs:

Definition 8. • An implicit CGS is a CGS where, in each location �, the transi-
tion function is defined by a finite sequence ((ϕ0, �0), ..., (ϕn, �n)), where �i ∈ Loc
is a location, and ϕi is a boolean combination of propositions Aj = c that evaluate
to true iff agent Ai chooses move c.

The transition table is then defined as follows: Edg(�,mA1 , ...,mAk
) = �j iff

j is the lowest index s.t. ϕj evaluates to true when players A1 to Ak choose
moves mA1 to mAk

. We require that the last boolean formula ϕi be 	, so that
no agent can enforce a deadlock.
• An explicit CGS is a CGS where the transition table is defined explicitly.

The size |C| of a CGS C is defined as |Loc| + |Edg|. For explicit CGSs, |Edg| is
the size of the transition table. For implicit CGSs, |Edg| is the sum

∑
|ϕ| used

for the definition of Edg.
The size of an ATS is |Loc|+ |Mov| where |Mov| is the sum of the number of

locations in each possible move of each agent in each location.

4.2 Expressiveness of CGSs and ATSs

We prove in this section that CGSs and ATSs are closely related: they can model
the same concurrent games. In order to make this statement formal, we use the
following definition, which extends bisimulation to strategies of coalitions:
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Definition 9 ([4]). Let A and B be two models of concurrent games (either
ATSs or CGSs) over the same set Agt of agents. Let R ⊆ LocA × LocB be a
(non-empty) relation between states of A and states of B. That relation is an
alternating bisimulation when, for any (�, �′) ∈ R, the following conditions hold:

– LabA(�) = LabB(�′);
– for any coalition A ⊆ Agt, we have

∀m : A→ MovA(�, A). ∃m′ : A→ MovB(�′, A).
∀q′ ∈ Next(�′, A,m′). ∃q ∈ Next(�, A,m). (q, q′) ∈ R.

– symmetrically, for any coalition A ⊆ Agt, we have

∀m′ : A→ MovB(�′, A). ∃m : A→ MovA(�, A).
∀q ∈ Next(�, A,m). ∃q′ ∈ Next(�′, A,m′). (q, q′) ∈ R.

where Next(�, A,m) is the set of locations that are reachable from � when each
player Ai ∈ A plays m(Ai).

Two models are said to be alternating-bisimilar if there exists an alternating
bisimulation involving all of their locations.

It turns out that ATSs and CGSs (both implicit and explicit ones) have the same
expressive power w.r.t. this equivalence:

Theorem 10. 1. Any explicit CGS can be translated into an alternating-
bisimilar implicit one in linear time; 2. Any implicit CGS can be translated into
an alternating-bisimilar explicit one in exponential time; 3. Any explicit CGS
can be translated into an alternating-bisimilar ATS in cubic time; 4. Any ATS
can be translated into an alternating-bisimilar explicit CGS in exponential time;
5. Any implicit CGS can be translated into an alternating-bisimilar ATS in expo-
nential time; 6. Any ATS can be translated into an alternating-bisimilar implicit
CGS in quadratic time;

Figure 4 summarizes the above results. From our complexity results (and the
assumption that the polynomial-time hierarchy does not collapse), the costs of
the above translations is optimal.

4.3 Model Checking ATL on Implicit CGSs

Basically, the algorithm for model-checking ATL [2,3] is similar to that for CTL: it
consists in recursively computing fixpoints, e.g. based on the following equivalence:

〈〈A〉〉 pU q ≡ μZ.(q ∨ (p ∧ 〈〈A〉〉XZ))

The difference with CTL is that we have to compute the pre-image of a set of
states for some coalition.

It has been remarked in [11] that computing the pre-images is not in PTIME
anymore when considering implicit CGSs: the algorithm has to non-deterministi-
cally guess the moves of players in A in each location, and for each pre-image, to
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Fig. 4. Costs of translations between the three models

solve the resulting SATqueries derived from those choices and from the transition
table. As a consequence, model-checking ATL on implicit CGSs is ΣP

2 -hard [11].
However (see below), the ΣP

2 -hardness proof can very easily be adapted to prove
ΠP

2 -hardness. It follows that the ΣP
2 algorithm proposed in [11] cannot be correct.

The flaw is in the way it handles negation: games played on CGSs (and ATSs) are
generally not determined, and the fact that a player has no strategy to enforce ϕ
does not imply that the other players have a strategy to enforce ¬ϕ. It rather
means that the other players have a co-strategy to enforce ¬ϕ (see [9] for precise
explanations about co-strategies).

Still, the ΣP
2 -algorithm is correct for formulas whose main operator is not a

negation. As a consequence:

Proposition 11. Model checking ATL on implicit CGSs is in ΔP
3 .

Since the algorithm consists in labeling the locations with the subformulae it
satisfies, the above result holds even if we consider the DAG-size of the formula.

Before proving optimality, we briefly recall the ΣP
2 -hardness proof of [11]. It

relies on the following ΣP
2 -complete problem:

EQSAT2:

Input: two families of variables X = {x1, ..., xn} and Y = {y1, ..., yn}, a
boolean formula ϕ on the set of variables X ∪ Y .

Output: True iff ∃X. ∀Y. ϕ.

This problem can be encoded in an ATL model-checking problem on an im-
plicit CGS: the CGS has three states q1, q� and q⊥, and 2n agents A1, ..., An,
B1, ..., Bn, each having two possible choices in q1 and only one choice in q�
and q⊥. The transitions out of q� and q⊥ are self loops. The transitions from q1

are given by: δ(q1) = ((ϕ[xj ← (Aj ?= 1), yj ← (Bj ?= 1)], q�)(	, q⊥)).
Then clearly, the coalition A1, ..., An has a strategy for reaching q�, i.e.,

q1 |= 〈〈A1, ..., An〉〉X q�, iff there exists a valuation for variables in X s.t. ϕ is
true whatever B-agents choose for Y .

Now, this encoding can easily be adapted to the dual (thus ΠP
2 -complete)

problem AQSAT2, in which, with the same input, the output is the value of
∀X. ∃Y. ϕ. It suffices to consider the same implicit CGS, and the formula
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¬ 〈〈A1, ..., An〉〉X¬q�. It states that there is no strategy for players A1 to An

to avoid q�: whatever their choice, players B1 to Bn can enforce ϕ.
Following the same idea, we prove the following result:

Proposition 12. Model checking ATL on implicit CGSs is ΔP
3 -hard.

Proof. We consider the following ΔP
3 -complete problem[14,18].

SNSAT2:

Input: m families of variables Xi = {x1
i , ..., x

n
i }, m families of variables Yi =

{y1
i , ..., y

n
i }, m variables zi, m boolean formulae ϕi, with ϕi involving

variables in Xi ∪ Yi ∪ {z1, ..., zi−1}.
Output: The value of zm, defined by⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

z1
def= ∃X1. ∀Y1. ϕ1(X1, Y1)

z2
def= ∃X2. ∀Y2. ϕ2(z1, X2, Y2)

. . .

zm
def= ∃Xm. ∀Ym. ϕm(z1, ..., zm−1, Xm, Ym)

We pick an instance I of this problem, and reduce it to an instance of the
ATL model-checking problem. Note that such an instance uniquely defines the
values of variables zi. We write vI : {z1, ..., zm} → {	,⊥} for this valuation.
Also, when vI(zi) = 	, there exists a witnessing valuation for variables in Xi.
We extend vI to {z1, ..., zm} ∪

⋃
iXi, with vI(xji ) being a witnessing valuation

if vI(zi) = 	.
We now define an implicit CGS C as follows: it contains mn agents Aji (one

for each xji ), mn agents Bji (one for each yji ), m agents Ci (one for each zi), and
one extra agent D. The structure is made of m states qi, m states qi, m states si,
and two states q� and q⊥. There are three atomic propositions: s� and s⊥, that
label the states q� and q⊥ resp., and an atomic proposition s labeling states si.
The other states carry no label.

Except forD, the agents represent booleans, and thus always have two possible
choices (0 and 1). Agent D always has m choices (0 to m − 1). The transition
relation is defined as follows: for each i,

δ(qi) = ((	, si));
δ(si) = ((	, qi));
δ(q�) = ((	, q�));
δ(q⊥) = ((	, q⊥));

δ(qi) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

((D ?= 0) ∧ ϕi[xji ← (Aji
?= 1),

yji ← (Bji
?= 1), zk ← (Ck

?= 1)], q�)
((D ?= 0), q⊥)
((D ?= k) ∧ (Ck

?= 1), qk) for each k < i

((D ?= k) ∧ (Ck
?= 0), qk) for each k < i

(	, q�)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Intuitively, from state qi, the boolean agents choose a valuation for the variable
they represent, and agent D can either choose to check if the valuation really
witnesses ϕi (by choosing move 0), or “challenge” player Ck, with move k < i.

The ATL formula is built recursively by ψ0 = 	 and, writing AC for the coali-
tion {A1

1, ..., A
n
m, C1, ..., Cm}: ψk+1

def= 〈〈AC〉〉 (¬s) U (q� ∨ EX (s ∧ EX¬ψk)).
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Let fI(A) be the state-based strategy for agentA ∈ AC that consists in playing
according to the valuation vI (i.e. move 0 if the variable associated with A
evaluates to 0 in vI , and move 1 otherwise). The following lemma completes the
proof of Proposition 12:

Lemma 13. For any i ≤ m and k ≥ i, the following three statements are
equivalent: (a) C, qi |= ψk; (b) the strategies fI witness the fact that C, qi |= ψk;
(c) variable zi evaluates to 	 in vI. �

Finally, Lemma 13 and Proposition 11, this implies:

Theorem 14. Model checking ATL on implicit CGSs is ΔP
3 -complete.

4.4 Model Checking ATL on ATSs

Also for ATSs, the PTIME upper bound holds only when the number of agents
is fixed. As in the previous section, the NP algorithm proposed in [11] for ATL
model-checking on ATSs does not handle negation correctly. Again, the algo-
rithm involves the fixpoint computation with pre-images, and the pre-images
are now computed in NP [11]. This yields a ΔP

2algorithm for full ATL.

Proposition 15. Model checking ATL over ATSs is in ΔP
2 .

The NP-hardness proof of [11] can be adapted in order to give a direct reduction
of 3SAT, and then extended to SNSAT:

Proposition 16. Model checking ATL on ATSs is ΔP
2 -hard.

Proof. Let us first recall the definition of the SNSAT problem [14]:

SNSAT:

Input: p families of variables Xr = {x1
r, ..., x

m
r }, p variables zr, p boolean

formulae ϕr in 3-CNF, with ϕr involving variables in Xr ∪ {z1, ..., zr−1}.
Output: The value of zp, defined by⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z1
def= ∃X1. ϕ1(X1)

z2
def= ∃X2. ϕ2(z1, X2)

z3
def= ∃X3. ϕ3(z1, , z2, X3)

. . .

zp
def= ∃Xp. ϕp(z1, ..., zp−1, Xp)

Let I be an instance of SNSAT, where we assume that each ϕr is made of n
clauses S1

r to Snr , with Sjr = αj,1r sj,1r ∨αj,2r sj,2r ∨αj,3r sj,3r . Again, such an instance
uniquely defines a valuation vI for variables z1 to zr, that can be extended to
the whole set of variables by choosing a witnessing valuation for x1

r to xnr when
zr evaluates to true.

We now describe the ATS A: it contains (8n + 3)p states: p states qr and p
states qr, p states sr, and for each formula ϕr , for each clause Sjr of ϕr, eight
states qj,0r , ..., qj,7r , as in the previous reduction.
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States sr are labeled with the atomic proposition s, and states qj,kr that do
not correspond to clause Sjr are labeled with α.

There is one player Ajr for each variable xjr, one player Cr for each zr, plus
one extra player D. As regards transitions, there are self-loops on each state qj,kr ,
single transitions from each qr to the corresponding sr, and from each sr to the
corresponding qr. From state qr,

– playerAjr will choose the value of variable xjr, by selecting one of the following
two sets of states:

{qg,kr | ∀l ≤ 3. sg,lr �= xjr or αg,lr = 0} ∪ {qt, qt | t < r} if xjr = 	
{qg,kr | ∀l ≤ 3. sg,lr �= xjr or αg,lr = 1} ∪ {qt, qt | t < r} if xjr = ⊥

Both choices also allow to go to one of the states qt or qt. In qr, players Ajt
with t �= r have one single choice, which is the whole set of states.

– player Ct also chooses for the value of the variable it represents. As for
players Ajr, this choice will be expressed by choosing between two sets of
states corresponding to clauses that are not made true. But as in the proof
of Prop. 12, players Ct will also offer the possibility to “verify” their choice,
by going either to state qt or qt. Formally, this yields two sets of states:

{qg,kr | ∀l ≤ 3. sg,lr �= zt or αg,lr = 0} ∪ {qu, qu | u �= t} ∪ {qt} if zt = 	
{qg,kr | ∀l ≤ 3. sg,lr �= zt or αg,lr = 1} ∪ {qu, qu | u �= t} ∪ {qt} if zt = ⊥

– Last, player D chooses either to challenge a player Ct, with t < r, by choos-
ing the set {qt, qt}, or to check that a clause Sjr is fulfilled, by choosing
{qj,0r , ..., qj,7r }.

Let us first prove that any choices of all the players yields exactly one state.
It is obvious except for states qr. For a state qr, let us first restrict to the choices
of all the players Ajr and Cr, then:

– if we only consider states q1,0r to qn,7r , the same argument as in the previous
proof ensures that precisely on state per clause is chosen,

– if we consider states qt and qt, the choices of players Bt ensure that exactly
one state has been chosen in each pair {qt, qt}, for each t < r.

Clearly, the choice of player D will select exactly one of the remaining states.
Now, we build the ATL formula. It is a recursive formula (very similar to the

one used in the proof of Prop. 12), defined by ψ0 = 	 and (again writing AC for
the set of players {A1

1, ..., A
m
p , C1, ..., Cp}):

ψr+1
def= 〈〈AC〉〉 (¬s) U (α ∨ EX (s ∧ EX¬ψr)).

Then, writing fI for the state-based strategy associated to vI :

Lemma 17. For any r ≤ p and t ≥ r, the following statements are equivalent:
(a) qr |= ψt; (b) the strategies fI witness the fact that qr |= ψt; (c) variable zr
evaluates to true in vI . �
Theorem 18. Model checking ATL on ATSs is ΔP

2 -complete.
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4.5 Model Checking ATL+

The complexity of model checking ATL+ over ATSs has been settled ΔP
3 -complete

in [18]. But ΔP
3 -hardness proof of [18] is in LOGSPACE only w.r.t. the DAG-size of

the formula. We prove that model checking ATL+ is in fact ΔP
3 -complete (with

the standard definition of the size of a formula) for our three kinds of game
structures.

Theorem 19. Model checking ATL+ is ΔP
3 -complete on ATSs as well as on

explicit CGSs and implicit CGSs.

5 Conclusion

In this paper, we considered the basic questions of expressiveness and complexity
of ATL. We showed that ATL, as originaly defined in [2,3], is not as expressive
as it could be expected, and we argue that the modality “Release” should be
added in its definition [12].

We also precisely characterized the complexity of ATL and ATL+ model-
checking, on both ATSs and CGSs, when the number of agents is not fixed.
These results complete the previously known results about these formalisms and
it is interesting to see that their complexity classes (ΔP

2or ΔP
3 ) are unusual in

the model-checking area.
As future works, we plan to focus on the extensions EATL (extending ATL

with a modality 〈〈 · 〉〉
∞
F expressing a Büchi-like winning condition, and for which

state-based strategies are still sufficient) and EATL+ (the obvious association of
both extensions, but for which state-based strategies are not sufficient anymore).

Acknowledgement. We thank Wojtek Jamroga for pointing out that formulas
in SNSAT2 cannot be restricted to CNF [6].
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Abstract. Logics that can reason about sets and their cardinality bounds
are useful in program analysis, program verification, databases, and knowl-
edge bases. This paper presents a class of constraints on sets and their
cardinalities for which the satisfiability and the entailment problems are
computable in polynomial time. Our class of constraints, based on tree-
shaped formulas, is unique in being simultaneously tractable and able to
express 1) that a set is a union of other sets, 2) that sets are disjoint, and
3) that a set has cardinality within a given range. As the main result we
present a polynomial-time algorithm for checking entailment of our
constraints.

1 Introduction

Hierarchical representations of sets of entities are ubiquitous in computer science,
arising in programming languages, program analysis, software engineering and
knowledge bases. When considering a class of constraints, we are interested in
two main questions:

- satisfiability: is a set of constraints consistent (satisfiable)?
- entailment: does one set of constraints imply another set of constraints?

Note that a solution to the second problem is also a solution to the first prob-
lem: checking whether a set of constraints implies (entails) a fixed contradictory
constraint solves the satisfiability problem.

In object-oriented programming and software modelling, set hierarchies model
classification of entities into classes and are an important component of object
models represented using notations such as UML [11] and Alloy [14]. The entail-
ment problem for set hierarchies arises when checking, for example, that one UML
diagram is a refinement of another diagram. Satisfiability checking can detect con-
tradictory constraints that indicate an error in the model or system requirements.

Set hierarchies are also essential in knowledge representation [26]. Entailment
checking allows one to check that the classification in a particular knowledge-base
is a consequence of the classification in a more general ontology.

Recently, researchers have considered the (typestate) generalization of static
class hierarchies in object-oriented languages to dynamically changing hierar-
chies of sets of objects [9, 17]. Using the ideas of [20], we can statically approxi-
mate dynamically changing set hierarchy at each program point by propagating
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constraints between sets of objects using a data-flow analysis. A modular ap-
proach to such analysis needs to check that 1) each procedure precondition is
satisfied at each procedure call site, and 2) the postcondition holds at the end
of each procedure. When the propagated information encodes a set hierarchy,
these two checks require deciding the entailment of such hierarchies.
Sets with cardinality constraints. One often wishes to express constraints
not only on sets but also on certain distinguished elements of these sets. A
simple and unified way to reason about elements is to represent them as sets of
cardinality one. Similarly, it is often desirable to state that a set is non-empty
or, more generally, that the number of its elements is within given bounds. This
motivates the use of cardinality constraints on sets that participate in hierarchies.

We have previously considered expressive logics that can express such con-
straints by combining the Boolean Algebra of sets with a cardinality operator
and Presburger Arithmetic [18], [16, Chapter 7]. However, the NP-hardness of
these constraints potentially limits their practical use, which motivated us to
find constraints that have polynomial-time algorithms. The result is the class
presented in this paper, for which we construct a polynomial-time algorithm for
entailment (and therefore satisfiability). This class can express a combination
of constraints that, to the best of our knowledge, cannot be represented using
existing polynomial-time formalisms (see Section 6).
Our result. We call our notion of set hierarchy itree, standing for inclusion tree,
because the edges in the hierarchy represent set inclusion B ⊆ A and because
the inclusion edges in an itree form an inverted tree. Moreover, an itree can
specify that a set is covered by some of its subsets (A = B ∪ C ∪ D), or/and
that these subsets are pairwise disjoint (B ∩ C = C ∩ D = B ∩ D = ∅). An
itree can also specify multiple orthogonal divisions of one set into subsets, such
as A = B ∪ C ∧A = D ∪ E ∧D ∩ E = ∅. Finally, an itree can specify constant
cardinality constraints on sets, such as 1 ≤ |A| ≤ 10000. Our algorithm checks
entailment of conjunctions of such constraints.

The key idea of our polynomial-time algorithm is to define a notion of normal
form where each tree node satisfies certain local constraints. We show that this
normal form can be enforced in polynomial time using a set of rewrite rules. We
then give polynomial-time conditions for checking whether a normalized itree
implies a given constraint on variables. This yields an algorithm for checking
whether an itree implies a conjunction of such constraints, and we show that an
itree can always be represented as a conjunction of quantifier-free constraints.
We therefore obtain a polynomial entailment test for itree constraints.
Contributions. The contributions of our paper include the following:

– We introduce itree constraints for expressing hierarchies of sets, and permit-
ting a simple form of existential quantification over sets (Section 2.2).

– We show that generalizing the definition of itrees to permit acyclic graphs
yields constraints whose satisfiability is NP-hard (Section 2.3).

– We give a polynomial-time algorithm for checking the satisfiability of itrees
by proving sufficient conditions for the existence of their models (Section 3).
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– We give a polynomial-time algorithm for checking whether an itree entails a
given cardinality, inclusion or disjointness constraint (Section 4).

– We show that the quantifiers in an itree can be eliminated, which, with the
previous result, gives polynomial-time entailment for itrees (Section 5).

A preliminary version of the current polynomial-time results (including proofs)
appears in the technical report [22], using the same ideas but slightly differ-
ent definitions. Due to space limitations we here present only proof outlines,
describing the main ideas and revealing the underlying algorithms.

2 Constraints on Sets and Their Graphical
Representation

The constraints that we consider in this paper are expressible using existentially
quantified conjunctions of boolean algebra formulas whose variables range over
sets of uninterpreted objects. We call these formulas Conjunctive constraints on
Sets with Cardinalities and denote them CSC.

Definition 1. CSC formulas are given by the following syntax:

φ ::= ∃ν1, . . . , νn. P1 ∧ . . . ∧ Pm
P := S1 ⊆ S2 | S1 ∩ S2 = ∅ | |ν|≤k | |ν|≥k
S := s | ν | S1 ∪ S2

Variables in CSC formulas denote sets and can be free set variables (denoted s,
s′, si) or bound set variables (denoted ν, ν′,νi). Sets in CSC formulas are denoted
by variables or unions of variables. Cardinality constraints apply only to bound
variables.

Lemma 1. Satisfiability of CSC formulas is NP-hard.

Lemma 1 holds because CSC can express boolean algebra constraints on subsets
of a fixed set variable U . Namely, union together with disjointness from U can
define set complement; union and complement then allow encoding arbitrary
propositional operations.

2.1 Graph Representation IGRAPH for CSC

As a first step towards identifying polynomial constraints, we introduce a rep-
resentation of CSC by igraphs (standing for inclusion graphs). In the following
definition of igraphs, the nodes VN are bound set variables ν and the edges �
represent the subset inclusion of sets. Nodes are tagged with cardinality con-
straints and with mode symbols establishing additional constraints between a
node and its direct sons. If ν is tagged with the mode symbol ©, the sons of ν
are pairwise disjoint. If ν is tagged with the mode symbol �, the sons {ν1, . . . , νn}
of ν cover entirely ν, that is ν ⊆ ∪iνi. If ν is tagged with the mode symbol �,
then ν is equal to each of its sons. When a set ν participates in several atomic
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formulas, we can use the � mode to introduce synonyms for ν. Finally, a mapping
σ establishes equalities between free set variables s ∈ SN and bound variables
ν ∈ VN. It also enables the encoding of set emptiness using a special symbol ∅I .

Definition 2 (IGRAPH). An igraph G ∈ IGRAPH is either the false igraph ⊥I
or a tuple (SN,VN,�,CInf,CSup,M, σ) such that

SN and VN are two disjoint sets of set variables

(VN,�) is a directed graph

CInf : VN→ N (N = {0, 1, 2, . . .})
CSup : VN→ N ∪ {∞} (∀k ∈ N. k <∞)

M : VN→ P({�,�,©})
σ : SN→ VN ∪ {∅I}

The set SN corresponds to the free variables s of G. The elements of VN cor-
respond to the bound variables ν and are also called nodes by graph analogy.
P({�,�,©}) denotes the set of subsets of {�,�,©}. We write ν � ν′ when
(ν, ν′)∈�. We define the set of sons of ν ∈ VN by Sons(ν) = {ν′|ν′ � ν} and
the incoming degree of ν by d(ν) = |Sons(ν)|.

Definition 3 (IGRAPH semantics). The semantics Sem(⊥I) of the false igraph
⊥I is by definition the formula false. With each igraph G �=⊥I we associate a
quantifier-free CSC formula Sem0(G) as follows:

Sem0(G)
def
=

∧

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∧
{ν′⊆ν

∣
∣ ν, ν′∈VN ∧ ν′�ν}

∧
{ν′=ν

∣
∣ ν, ν′∈VN ∧ ν′�ν ∧ �∈M(ν)}

∧
{ν⊆

⋃
Sons(ν)

∣
∣ ν∈VN ∧ �∈M(ν)}

∧
{ν′∩ν′′=∅

∣
∣ ν∈VN ∧ ν′, ν′′∈Sons(ν) ∧ ν′ �=ν′′ ∧©∈M(ν)}

∧
{CInf(ν)≤|ν|≤CSup(ν)

∣
∣ ν∈VN}

The semantics Sem(G) of G is then:

Sem(G)
def
= ∃ν1, . . . , νn. Sem0(G) ∧

∧

s∈SN

{
s = ∅, if σ(s) = ∅I
s = ν, if σ(s) = ν

Figure 1 gives an example of an igraph G (represented graphically) with its
semantics Sem(G). Given two igraphs G and G′ we write G |= G′ iff Sem(G)
entails Sem(G′) and we write G ≡ G′ when both G |= G′ and G′ |= G. We say
that G is satisfiable iff Sem(G) is satisfiable. We also use the symbols |= and ≡ to
compare igraphs and CSC formulas, identifying igraphs G with their semantics
Sem(G). To avoid confusion between the syntax and the semantics of formulas
we use square brackets around formulas. Thus, in the following sections, [ν = ν′]
denotes an equality between two sets while ν= ν′ only states that ν and ν′ are
the same variable symbol (or the same node).
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sMEDIA, ν0
[0..90]

�

νcontent

�

sVIDEO, sMOVIE, ν1
[5..∞]

sMUSIC, ν2
[25..∞]

νfile

�

νtype

©

sMP3, ν3 sAVI, ν4

νsize

�,©

sSMALL, ν5
[0..50]

sBIG, ν6
[0..15]

∅I , sCENSORED

Sem(G) =
∃ν1, ν2, ν3, ν4, ν5, ν6,
νcontent, νfile, νtype, νsize.
νcontent⊆ν0 ∧ νfile⊆ν0∧
ν1⊆νcontent ∧ ν2⊆νcontent∧
νtype⊆νfile ∧ ν3⊆νtype∧
ν4⊆νtype ∧ νsize⊆νfile∧
ν5⊆νsize ∧ ν6⊆νsize

ν0 =νcontent =νfile ∧
νfile =νtype =νsize ∧
νcontent =ν1 ∪ ν2∧
νsize =ν5 ∪ ν6 ∧
ν3 ∩ ν4 =∅ ∧

ν5 ∩ ν6 =∅ ∧
|ν0|≤ 90 ∧ |ν1|≥5 ∧
|ν2|≥25∧
|ν5|≤ 50 ∧ |ν6|≤15 ∧

sMEDIA =ν0 ∧ sMOVIE =ν1∧
sVIDEO =ν1 ∧ sMUSIC =ν2∧
sMP3 =ν3 ∧ sAVI =ν4∧
sSMALL =ν5 ∧ sBIG =ν6∧
sCENSORED =∅

Fig. 1. An example of itree (a particular case of igraph) and its semantics

By construction, the semantics of an igraph is expressible by a CSC formula.
The following lemma shows that the converse holds as well.

Lemma 2. For each φ ∈ CSC we can compute in linear time an equivalent igraph.

As a consequence, the satisfiability of igraphs is also NP-hard.

2.2 Definition of Itrees

We can now define our subclass of tree-shaped igraphs. We call this subclass
itrees. Polynomial-time algorithms for satisfiability and entailment of itrees are
the subject of this paper.

Definition 4 (ITREE). A generalized itree (gitree) T is either the false igraph
⊥I or an igraph G ∈ IGRAPH such that (VN,�) is a tree, oriented from the
leaves to the root.

An itree is a generalized itree such that, for each ν ∈ VN

σ−1(ν) = ∅ ⇒ CInf(ν) = 0 ∧ CSup(ν) =∞ (QE)

Thanks to the tree-shape condition, itrees (and even generalized itrees) satisfy
some important properties that are not true for general (or acyclic) igraphs. For
example, it follows from Lemma 10 of Section 4.2 that the semantics φ of an
itree always satisfies, for all set variables s1, s2, s3, the following property:
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φ |= [s1 ⊆ s2 ∧ s1 ⊆ s3] ⇒
(
φ |= [s1 = ∅] ∨ φ |= [s2 ⊆ s3] ∨ φ |= [s3 ⊆ s2]

)

This property allows us to prove, for example, that the CSC formula [A ⊆ B∧A ⊆
C] is not expressible as a (generalised) itree. Therefore, the class ITREE is a
strict subclass of IGRAPH and is a good candidate for a more efficient fragment
of IGRAPH.

The QE condition (standing for quantifier elimination) in the definition of
ITREE ensures that the semantics of itrees can in fact be expressed using a
quantifier-free CSC formula, as proved in Section 5. Note that a sufficient con-
dition for QE is that σ−1(ν) �= ∅ for each ν ∈ VN.

Because we can check whether a graph is a tree by depth-first traversal of the
graph, we have the following result.

Lemma 3. Deciding whether a given igraph G ∈ IGRAPH is an itree (G ∈
ITREE) can be done in linear time.

2.3 Hardness of Acyclic Igraphs

We have observed that satisfiability of igraphs is NP-hard. In contrast, we prove
in the rest of this paper that itrees have polynomial-time satisfiability and entail-
ment problems. A natural question to ask is whether we could obtain polynomial-
time algorithms for igraphs where inclusions are acyclic but not tree-like. The
following lemma (see also [22, Section 4, Lemma 4]) suggests a negative answer
to this question.

Lemma 4. Let IDAG denote the class of igraphs for which (VN,�) is a directed
acyclic graph (DAG). For each igraph in IGRAPH we can compute in polynomial
time an equivalent igraph in IDAG. Therefore, satisfiability in IDAG is NP-hard.

The essence of the proof of Lemma 4 is that we can collapse (in polynomial time)
cycles in an igraph to obtain an equivalent acyclic igraph. In addition to NP-
hardness of the class of acyclic igraphs, we can prove NP-hardness for several
subclasses of IDAG, using the construction in [22, Section 5, Theorem 2]. We
therefore believe that considering tree-like restrictions on igraphs is a reasonable
approach to identifying polynomial constraints.

3 Deciding Satisfiability of Generalized Itrees in
Polynomial Time

This section gives a linear-time algorithm for satisfiability of generalized itrees.
This result is a first step to an algorithm for checking entailment, which we
describe in Section 5, building on the results in this section. Moreover, the sat-
isfiability algorithm is of interest in itself.

We proceed by first showing (Lemma 5) that the bottom-up propagation of
constraints (rewriting rules R1 and R2) allows transforming in linear time any
gitree T into an equivalent gitree R↓2(T ) such that either a) R↓2(T ) =⊥I , in
which case T is clearly unsatisfiable, or b) R↓2(T ) satisfies two properties C1
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and C2. We then show (Lemma 6) that any gitree for which C1 and C2 hold
is satisfiable. As a result, we can decide in linear time whether T is satisfiable
by first computing R↓2(T ) and then returning satisfiable if and only if R↓2(T ) is
different from ⊥I .

Lemma 5. For each gitree T we can compute in linear time an equivalent gitree
R↓2(T ) such that either R↓2(T ) =⊥I or R↓2(T ) satisfies (for each node ν) both:

M(ν) ∈ {∅, {�}, {©}, {�}, {©,�}} (C1(ν))

and BUInf(ν) ≤ CInf(ν) ≤ CSup(ν) ≤ BUSup(ν) (C2(ν))

where, for Sons(ν)={ν1, . . . , νn},

BUInf(ν)
def
=

{ ∑
i CInf(νi), if © ∈ M(ν)

maxi CInf(νi), otherwise

BUSup(ν)
def
=

⎧
⎨

⎩

mini CSup(νi), if � ∈ M(ν)∑
i CSup(νi), if � ∈ M(ν)
∞, otherwise

Proof. Such a form R↓2(T ) can be obtained from T in two steps. The first steps
consists in simplifying the mode combinations by applying the following rewrit-
ing rule R1 to every node (in any order).

if apply
d(ν) = 0 M(ν) := (M(ν)− {�})
d(ν) ≤ 1 M(ν) := (M(ν)− {©})
d(ν) ≥ 1 M(ν) := (M(ν)− {�})
� ∈ M(ν)
d(ν) ≥ 2 M(ν) := (M(ν)− {©})
{�,©} ⊆ M(ν) ∀ν′∈Sons(ν), CSup(ν′) := 0

(R1(ν))

The second step consists in applying the ruleR2 below to every node, proceeding
from the leaves towards the root, in order to 1) refine the cardinality bounds and
2) recognize the contradictory bounds such that CInf(ν) > CSup(ν).

CInf(ν) := Max(CInf(ν),BUInf(ν))
CSup(ν) := Min(CSup(ν),BUSup(ν))
If CInf(ν) > CSup(ν) then T :=⊥I

(R2(ν))

We say that Ci holds for T (i.e. “T satisfies Ci”) iff Ci(ν) holds for each node
ν of T .

Lemma 6. Every gitree T �=⊥I for which both C1 and C2 hold is satisfiable.

Proof. We first note that a gitree T such that T �=⊥I is satisfiable if and only
if there exists a model for Sem0(T ). Indeed, a model (Δ,α : VN → P(Δ)) for
Sem0(T ) can be turned into a model (Δ,α′ : SN→ P(Δ)) for Sem(T ) by taking
α′(s) = ∅ when σ(s) = ∅I and α′(s) = α(σ(s)) when σ(s) ∈ VN.
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ν1, s1
[2..4]
�,�

ν2
[0..4]

�

ν4
[0..2]

ν3
[2..4]
©

ν5
[3..∞]

R1(ν1)
R1(ν3)

=⇒

ν1, s1
[2..4]

�

ν2
[0..4]

�

ν4
[0..2]

ν3
[2..4]

ν5
[3..∞]

R2(ν2)
R2(ν3)

=⇒

ν1, s1
[2..4]

�

ν2
[0..2]

�

ν4
[0..2]

ν3
[3..4]

ν5
[3..∞]

R2(ν1)
=⇒

ν1, s1
[3..2]

�

ν2
[0..2]

�

ν4
[0..2]

ν3
[3..4]

ν5
[3..∞]

R2(ν1)
=⇒ ⊥I

Fig. 2. Example of R1 and R2 derivation

When T satisfies both C1 and C2 we can build a model for Sem0(T ) in two
steps. We first choose (in linear time) relevant cardinalities ψ(ν) ∈ N for the
nodes ν, proceeding from the root to the leaves. More precisely, we take ψ(ν) =
CInf(ν) for the root ν of T and define recursively the values ψ(νi) for the sons νi
of a node ν, for a chosen ordering of Sons(ν) = {ν1, . . . , νn}, and by induction
on i = 1..n:

ψ(νi)
def
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CInf(νi) if M(ν) = ∅
CInf(νi) if M(ν) = {©}
ψ(ν) if M(ν) = {�}
min(CSup(νi), ψ(ν)) if M(ν) = {�}
min(CSup(νi), ψ(ν)−Σ

i′<i
ψ(νi′ )−Σ

i′>i
CInf(νi′ )) if M(ν) = {©,�}

The conditions C1 and C2 guarantee that this cardinality choice satisfies the
following property Hψ for every node ν such that Sons(ν) = {ν1, . . . , νn}:

CInf(ν) ≤ ψ(ν) ≤ CSup(ν)∧
i ψ(νi) ≤ ψ(ν)

� ∈ M(ν)⇒
∧
i ψ(νi) = ψ(ν)

© ∈ M(ν)⇒
∑
i ψ(νi) ≤ ψ(ν)

� ∈ M(ν)⇒
∑

i ψ(νi) ≥ ψ(ν)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(Hψ(ν))

When a cardinality choice satisfying Hψ(ν) for all nodes ν of T is chosen, the
second step consists in building for every node ν, taken from the leaves to the
root, a model for the formula Sem0(T |ν) where T |ν denotes the sub-itree T |ν
of T of root ν. The role played by Hψ(ν) in this construction is the following:
the property ψ(νi) ≤ ψ(ν) ensures that the son νi of ν is small enough to fit in
ν; when M(ν) = {�}, the property ψ(νi) = ψ(ν) ensures that the sons νi of ν
have the right cardinality to be made equal to ν; when © ∈ M(ν) the property∑

i ψ(νi) ≤ ψ(ν) ensures that the disjoint union of the sons of ν can fit in ν; when
� ∈ M(ν), the property

∑
i ψ(νi) ≥ ψ(ν) ensures that the sons of ν contain

enough elements to cover entirely ν; the property CInf(ν) ≤ ψ(ν) ≤ CSup(ν)
ensures that the cardinality constraints are not violated.

Corollary 1. A gitree T is satisfiable iff R↓2(T ) �=⊥I.
Corollary 2. We can decide the satisfiability of a gitree in linear time.
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4 Entailment of Quantifier-Free Formulas

The goal of this section is to show that for every gitree T (and, in particular, for ev-
ery itree T ∈ ITREE), and every formula φ from a quantifier-free fragment QFCSC
of CSC defined below, we can decide whether T entails φ in polynomial time.

Definition 5 (QFCSC). φ ::= P1 ∧ . . . ∧ Pm
P := S1 ⊆ S2 | S1 ∩ S2 = ∅ | |s|≤k | |s|≥k
S := s | S1 ∪ S2

Because QFCSC formulas are conjunctions of atomic formulas, we can decide
whether T entails a formula Φ = P1 ∧ . . . ∧ Pn by checking whether T |= Pi for
all i = 1..n. For deciding T |= P we start by applying additional rewriting rules
that enforce stronger properties on gitrees than in the previous section. For each
kind of atomic proposition P (cardinality constraint, inclusion, or disjointness)
we then define conditions on normalized gitrees that 1) characterize the property
T |= P , and 2) are computable in polynomial time.

4.1 Checking Cardinality Constraints

Analogously to the definition of BUInf and BUSup (in Lemma 5) we next define
for every node ν of a gitree T a lower bound TDInf(ν) and an upper bound
TDSup(ν) for the cardinality of ν, this time corresponding to top-down reasoning.
Given a node ν such that ν = Root(T ) or ν � ν′ and Sons(ν′) = {ν, ν1, . . . , νn}
we define

TDInf(ν)
def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ν = Root(T )
0, if M(ν′) ∈ {∅, {�}}

CInf(ν′), if M(ν′) = {�}
CInf(ν′)−

∑
i CSup(νi), if M(ν′) ∈ {{©}, {©,�}}

TDSup(ν)
def
=

⎧
⎨

⎩

∞, if ν = Root(T )
CSup(ν′), if M(ν′) ∈ {∅, {�}, {©}}

CSup(ν′)−
∑
i CInf(νi), if M(ν′) ∈ {{�}, {©,�}}

Lemma 7. For each satisfiable gitree T we can compute in linear time an equiv-
alent gitree R↓3(T ) satisfying C1, C2, and, for each ν ∈ VN,

TDInf(ν) ≤ CInf(ν) ∧ CSup(ν) ≤ TDSup(ν) (C3(ν))

Proof. Such a gitree R↓3(T ) can be obtained by applying the following rule R3

to R↓2(T ) using a top-down strategy

CInf(ν) := Max(CInf(ν),TDInf(ν))
CSup(ν) := Min(CSup(ν),TDSup(ν)) (R3(ν))

Lemma 8 (Checking cardinality constraints). For each gitree T satisfying
C1, C2 and C3, each s ∈ SN, and each a, b ∈ N we have

T |=[a≤|s|≤b] ⇐⇒
{

either σ(s) = ∅I ∧ a = 0
or a≤CInf(σ(s))≤CSup(σ(s))≤b

We can therefore decide whether T |=[a≤|s|≤b] in linear time.
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Proof. For each T �=⊥I satisfying C1, C2, C3, for each ν ∈ VN and for each k ∈
[CInf(ν),CSup(ν)], the gitree T|ν|←k obtained from T by applying CInf(ν) := k

and CSup(ν) := k satisfies R↓2 (T|ν|←k) �= ⊥I . Therefore, by Corollary 1, there
exists a model (Δ,α) of Sem0(T ) such that |α(ν)| = k.

When T satisfies C1, C2, C3 we can then check that the cardinality bounds
CInf and CSup are optimal. That is, for every node ν of such a gitree we have
CInf(ν) = min{|α(ν)|, (Δ,α) |= Sem0(T )} and CSup(ν) = max{|α(ν)|, (Δ,α) |=
Sem0(T )}. The result follows directly from this observation.

4.2 Checking Inclusion and Disjointness Constraints

Now that we have optimal cardinality bounds, it is natural to look at the in-
fluence of cardinality constraints on other types of constraints. This approach
allows us to enforce an additional property C4 on gitrees using a rewriting sys-
tem R4. Finally, we show how to take advantage of C4 to decide which inclusion
constraints (Lemma 10) or which pairwise disjointness (Lemma 11) hold in a
gitree T .

Lemma 9. For each satisfiable gitree T we can compute in linear time an equiv-
alent gitree R↓4(T ) satisfying C1, C2, C3, and, for each ν ∈ VN,

CSup(ν) > 0
d(v) = 1⇒ M(ν) ∈ {{�}, {©}}
M(ν) = {�} ⇒ CInf(ν) < Σ

ν′�ν
CSup(ν′)

M(ν) = {©} ⇒ CSup(ν) > Σ
ν′�ν

CInf(ν′)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(C4(ν))

Proof. Such a gitreeR↓4(T ) can be obtained by applying with a bottom-up strat-
egy the following rule R4 to R↓3(T )

if apply
d(ν) = 1 M(ν) := {©}
M(ν) = ∅
M(ν) = {©} M(ν) := {�,©}
CSup(ν)≤ Σ

ν′�ν
CInf(ν′)

M(ν) = {�} M(ν) := {�,©}
CInf(ν)≥ Σ

ν′�ν
CSup(ν′)

d(ν) = 1 M(ν) := {�}
� ∈ M(ν)
CSup(ν) = 0 VN := VN− {ν}
d(ν) = 0 ∀s ∈ σ−1(ν)

σ(s) := ∅I

(R4(ν))
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ν1, s1
[5..5]

�

ν2
[0..3]

ν3
[2..2]

©

ν4
[2..4]

ν5, s2
[0..∞]

∅I , s3

R3(ν2)
R3(ν4)
R3(ν5)

=⇒

ν1, s1
[5..5]

�

ν2
[3..3]

ν3
[2..2]

©

ν4
[2..2]

ν5, s2
[0..0]

∅I , s3

R4(ν5)
=⇒

ν1, s1
[5..5]

�

ν2
[3..3]

ν3
[2..2]

©

ν4
[2..2]

∅I , s3, s2

R4(ν3)
R4(ν1)

=⇒

ν1, s1
[5..5]
�©

ν2
[3..3]

ν3
[2..2]

�

ν4
[2..2]

∅I , s3, s2

Fig. 3. Example of R3 and R4 derivations

Lemma 10 (Checking inclusion constraints). For each gitree T and each
X ⊆ VN we define a unary predicate IX on VN as the least fixed point of

IX(ν)⇐ ν ∈ X
IX(ν)⇐ � ∈ M(ν) ∧ (∃ν′ ∈ Sons(ν) IX(ν))
IX(ν)⇐ � ∈ M(ν) ∧ (∀ν′ ∈ Sons(ν) IX(ν))
IX(ν)⇐ ν � ν′ ∧ IX(ν′)

Then, if T satisfies C1, C2, C3, C4, then for all subsets S, S′ ⊆ SN, for
X ′ = {σ(s) | s ∈ S′ ∧ σ(s) ∈ VN} we have:

T |= [(∪S) ⊆ (∪S′)] ⇐⇒ ∀s ∈ S
(
σ(s) = ∅I ∨ IX′(σ(s))

)

Proof. The result is a consequence of the following observation: for each T sat-
isfying C1, C2, C3, C4, for each ν ∈ VN and each X ⊆ VN we have:

Sem0(T ) |= [ν ⊆ (∪X)] ⇐⇒ IX(ν)

The proof of this claim relies on a refinement of the algorithm of model con-
struction used in the proof of Lemma 6.

Lemma 11 (Checking disjointness constraints). For each gitree T we de-
fine the binary predicates D and D∗ on VN×VN by

D(ν, ν′) ⇐⇒ ν �= ν′ ∧ ∃ν′′ ∈ VN, {ν, ν′} ⊆ Sons(ν′′) ∧ © ∈ M(ν′′)
D∗(ν, ν′) ⇐⇒ ∃ν0, ν′0 ∈ VN, ν �∗ ν0 ∧ ν′ �∗ ν′0 ∧ D(ν0, ν′0)

Then, if C1, C2, C3, C4, for all subsets S, S′ of SN we have

T |= [(∪S)∩(∪S′) = ∅] ⇐⇒ ∀(s, s′) ∈ (S×S′)
{

either σ(s) = ∅I ∨ σ(s′) = ∅I
or D∗(σ(s), σ(s′))

Proof. The result is a consequence of the following observation, which again
relies on a refinement of the algorithm of model construction: when T satisfies
C1, C2, C3, C4 then for all ν, ν′ ∈ VN we have Sem0(T ) |= [ν ∩ ν′ = ∅] ⇐⇒
D∗(ν, ν′).
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We conclude this section by combining Lemmas 8,10, and 11 to prove the fol-
lowing theorem.

Theorem 1. We can decide whether a gitree entails a QFCSC formula in poly-
nomial time.

5 Testing Entailment of Itrees in Polynomial-Time

The test of entailment between two arbitrary gitrees (T |=T ′) is complicated by
the existential quantifiers in the semantics of T ′ which prevent us from decom-
posing Sem(T ′) into a conjunction of independent atomic formulas. However,
if we can express a gitree T ′ as a QFCSC formula, the previous section yields
a polynomial-time algorithm for checking whether a gitree entails T ′. In this
section we show that the condition

σ−1(ν) = ∅ ⇒ CInf(ν) = 0 ∧ CSup(ν) =∞ (QE)

in the definition of itrees ensures that we can indeed compute a QFCSC formula
associated with the itree, which motivates the definition of itrees as a subclass
of gitrees.

As a first step, the following lemma gives a sufficient condition for a node of
an itree (that is, a bound variable) to be expressible as a union of some free
variables.

Lemma 12. Given an itree T we define the unary predicate Det on VN as the
least fixed point of

Det(ν) ⇐ σ−1(ν) �= ∅
Det(ν) ⇐ � ∈ M(ν) ∧ ∀ν′ ∈ Sons(ν). Det(ν′)
Det(ν) ⇐ M(ν) = {�} ∧ ∃ν′ ∈ Sons(ν). Det(ν′)
Det(ν) ⇐ ∃ν′. ν � ν′ ∧M(ν′) = {�} ∧ Det(ν′)

Then for each node ν we have: Det(ν)⇒
(
∃Sν ⊆ SN. T |= [ν = (∪Sν)]

)

Moreover, the predicate Det and a mapping ν �→ Sν are computable in polynomial
time.

When Det(ν) holds for all nodes ν of a gitree T , it is clear that we can transform
the formula φ = Sem(T ) into an equivalent formula φ′ such that no quantified
variable appears inside inclusion constraints or disjointness constraints. However,
it is not sufficient to check that Det(ν) holds for all nodes ν to ensure that
T ∈ QFCSC. Indeed, QFCSC only allows expressing cardinality constraints on
free set variables and not on arbitrary union of set variables. It is for this reason
that we are naturally interested in the class ITREE of gitrees for which non trivial
cardinality constraints can only be enforced to nodes ν for which there exists
s ∈ SN such that σ(s) = ν.

Lemma 13. For each itree T ∈ ITREE we can compute in polynomial time an
equivalent itree R′↓(T ) satisfying Det(ν) for all nodes ν ∈ VN.
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if apply

ν � ν′ VN := VN− {ν}
d(ν) = 0 M(ν′) := M(ν′)− {�}
σ−1(ν) = ∅
ν = Root(T ) VN := VN− {ν}
d(ν) = 0
σ−1(ν) = ∅
M(ν) ∈ {∅, {©}} M(ν) := M(ν) ∪ {�}
ν � ν′ M(ν′) := M(ν′)− {�}
M(ν′) 
= {�}
σ−1(ν) = ∅
M(ν′) = {�} M(ν′) := ∅
∀ν ∈ Sons(ν′) ∀ν ∈ Sons(ν′)

M(ν) ∈ {∅, {©}} M(ν) := M(ν) ∪ {�}
σ−1(ν) = ∅

(R′(ν))

Fig. 4. Rewriting rule R′

Proof. Given an itree T we can first compute an itree T1 equivalent to T and
satisfying the condition C1 relative to modes (see Lemma 5). Because R1 does
not preserve the QE condition, we compute T1 in three steps: 1) discard the
cardinality constraints of T by applying CInf(ν) := 0 and CSup(ν) :=∞ to every
node; 2) apply R1,R2,R3,R4; and 3) recover the initial cardinality constraints
on the nodes that remain in the tree. Step 2) makes some subtrees of T empty
and changes M,CSup,CInf for existing nodes, but never introduces new nodes or
causes σ−1(ν) = ∅ to hold for additional nodes that remain in the tree. Thus,
QE holds after step 3). We can compute the final itree R′↓(T ), equivalent to T
and T1, by applying the rewriting rule R′ of Figure 4 to T1 using a bottom-up
strategy.

Lemma 14 (ITREE ⊆ QFCSC). For each itree T ∈ ITREE we can compute in
polynomial time an equivalent formula of QFCSC.

Given a mapping ν �→ Sν from Lemma 12, this QFCSC formula can be com-
puted from Sem(R′↓(T )) by first substituting each ν with ∪Sν in the formula
Sem(R′↓(T )) and then eliminating the quantifiers.

Figure 5 gives an example of an application ofR′ to an itree and indicates which
substitution can finally be applied to obtain a quantifier-free formula. Finally, com-
bining Lemma 14 and Theorem 1, we obtain the main theorem of this paper.

Theorem 2. We can decide entailment of itrees in polynomial time.

6 Related Work

We are not aware of any previously known constraints on sets with cardinal-
ity constraints that have polynomial-time entailment while supporting all the
constraints present in the ITREE class.
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ν1, s1
[2..∞]

�

ν2
©

s2 s3

ν3
�

ν4
s4

[1..∞]

R′(ν4)
=⇒

ν1, s1
[2..∞]

�

ν2
©

s2 s3

ν3

s4
[1..∞]

R′(ν1)
=⇒

ν1, s1
[2..∞]

ν2
©�

s2 s3

ν3
�

s4
[1..∞]

=⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

then apply
ν1 �→ s1
ν2 �→ s2∪s3
ν3 �→ s4
to Sem(T )

Fig. 5. Use of R′ on an itree and quantifier elimination

Set algebras with cardinalities. Quantified formulas of boolean algebra are
complete for the class of alternating exponential time with a linear number of
alternations [15], and even a small number of alternations leads to exponential
complexity [13]. Cardinality constraints naturally arise in quantifier elimination
for boolean algebras [21]. The quantifier-free case of Boolean Algebra with Pres-
burger Arithmetic is described in [5, Section 11], [28] with an non-deterministic
exponential time decision procedure, which is also achieved as a special case
of [18, 19, 24], [10, Section 8, Page 90]. Recently, [16, Section 7.9] gave a non-
deterministic polynomial-time algorithm for quantifier-free Boolean Algebra with
Presburger Arithmetic. All these constraints are NP-hard.

Description logics. Description logics [3] can reason about sets (concepts) and
relations (roles). However, polynomial-time description logics such as the ones
described in [8, Section 7] and [2], [3, Section 3.9.2] do not support set unions; the
presence of union is generally considered to lead to intractability. Note also that
the subsumption in the context of description logic typically refers to testing
A ⊆ B for two defined concepts A and B, as opposed to testing whether a
conjunction of constraints on sets implies another constraint on sets, as in our
case. Furthermore, cardinality constraints in description logics typically apply
to a relation and are used to designate a new set, as opposed to imposing a
constraint on an existing set.

Horn clause fragments. Polynomial-time fragments of first-order logic Horn
clauses such as [23, 12] can in principle encode some relationships on sets by
representing them as predicates, but they do not support cardinality constraints.

Constraint satisfaction problems. Constraint satisfaction problems (CSP)
[7] also identify the important idea of propagating constraints along tree-like
structures. For example, the Yannakakis algorithm has linear time complexity
for the satisfiability of acyclic sets of constraints [27]. However, such algorithms
typically work on concrete domains such as booleans or integers; we are not
aware of their application to constraints that involve set variables along with
their cardinalities. Indeed, an attempt to generalize itrees to acyclic graphs yields
NP-hard constraints. Note that representing the values of set variables explicitly
(as done in many constraint satisfaction problems over finite domains) would
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result in exponentially large models. Like [8, Section 7], our polynomial algorithm
avoids this problem using polynomial representation of models, but, unlike [8,
Section 7], can express conjunctions of constraints of the form A = B ∪ C.

Tree-width. The notion of tree-width [25] can be used as a measure of the “tree-
ness” of a conjunctive formula and often leads to polynomial results on classes
of formulas with bounded tree-width. However, although inclusion constraints in
an itree form a tree and syntactically have bounded tree-width, disjointness and
union constraints introduce dependencies between siblings of a tree. Therefore,
the overall tree-width of an itree formula is not bounded. Similarly, the result [6],
stating that monadic second-order logic queries over graph structures of bounded
tree-width are polynomial, does not seem to simplify the problem of checking en-
tailment (or satisfiability) of itrees. Indeed, there is no natural way of representing,
for example, cardinality bounds on sets in monadic second-order logic.

Constraints in program analysis. Set constraints [1,4] are incomparable to
our constraints. On the one hand, set constraints are interpreted over ground
terms and contain operations that apply a given free function symbol to each
element of the set. On the other hand, unlike our constraints, set constraints do
not support cardinality operators.
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Abstract. A web service is modeled here as a finite state machine. A
composition problem for web services is to decide if a given web service
can be constructed from a given set of web services; where the construc-
tion is understood as a simulation of the specification by a fully asyn-
chronous product of the given services. We show an EXPTIME-lower
bound for this problem, thus matching the known upper bound. Our
result also applies to richer models of web services, such as the Roman
model.

Keywords: Automata simulation, complexity, web services composition.

1 Introduction

Inherently distributed applications such as web services [1] increasingly get into
the focus of automated verification techniques. Often, some basic e-services are
already implemented, but no such simple service can answer to a more complex
query. For instance, a user interested in hiking Mt. Everest will ask a travel
agency for information concerning weather forecast, group travels, guides etc.
The travel agency will contact different e-services, asking for such information
and making appropriate reservations, if places are available. In general, single
services such as weather forecast or group reservations, are already available
and it is important to be able to reuse them without any change. The task of
the travel agency is to compose basic e-services in such a way that the user’s
requirements are met (and eventually some constraints wrt. the called services,
such as avoiding unreliable ones). Thus, one main objective is to be able to check
automatically that the composition of basic e-services satisfies certain desirable
properties or realizes another complex e-service.

In this paper we study a problem that arises in the composition of e-services
as considered in [2,3,4]. The setting is the following: we get as input a speci-
fication (goal) B, together with n available services A1, . . . ,An. Then we ask
whether the composition of the services Ai can simulate the behavior of the goal
B. This problem is known as composition synthesis. It amounts to synthesize
a so-called delegator, that tells at any moment which service must perform an
action. In essence, a delegator corresponds to a simulation of the goal service
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B by the composition of the available services Ai. In the most general setting,
as considered for instance in [9,8], services are modeled by communicating finite
state machines [5], that have access to some local data. In this paper, we re-
consider the simplified setting of the so-called Roman model [2] where services
are finite state processes with no access to data. This restriction is severe, but
it captures some quite natural cases. First, messages exchanged by services are
often synchronous (hand-shaking), which means that we do not need the full
power of communication channels. Second, even when data-driven web appli-
cations are considered, some restrictions on data are needed. For instance, [7]
assumes that specific user information is considered as constants in the data
base scheme.

The main result of this paper is the Exptime lower bound for the composition
synthesis problem in the very simple setting where the composition of the finite
state machinesAi is fully asynchronous (in particular there is no communication).
We also show that the same question can be solved in polynomial time if we assume
that the sets of actions of the available machines are pairwise disjoint, i.e., each
request can be handled by precisely one service. Note that in the latter case, the set
of actions depends of course on the number of processes, whereas for the first result
we show that the case where the set of actions is fixed is already Exptime-hard.
Thanks to the simplicity of the considered model the same lower bounds hold also
for much richer frameworks, as for example Colombo [3]. For the Roman model a
matching Exptime upper bound is known [2]. The complexity of the composition
problem for Colombo depends on restrictions of the model and is undecidable in
the most general case.

As related work, it is worth mentioning the approach of Pistore et al. [11]
who use planning techniques. The other difference is that the final goal is spec-
ified by a formula, and not as a simulation condition as we have here. More-
over, the accent there is put on satisfying one demand, i.e., constructing a
sequence of actions rather than a transition system, i.e. a new service. The
other possibility is to consider bisimulation instead of simulation relation. This
corresponds to the so-called orchestration problem, where the issue is to find
a communication architecture of the available services, that is equivalent to
the goal, modulo bisimulation. We think that this is less natural in our sim-
ple setting, mainly due the nature of the service composition which is modeled
here as a fully asynchronous product. Bisimulation requirement would mean
also that the client should be prepared to admit all the interleavings possible
in the composition, which usually makes the specification of the client’s goal
too complex. A result that is closely related to ours is the Exptime com-
pleteness of the simulation and bisimulation problems between non-flat sys-
tems [10]. The main difference to our setting is that both system and services
are given as composition of finite state machines using (binary) synchronization
on actions, i.e., an action can synchronize two services. In a sense this paper
shows that the lower bound for the simulation relation holds even without any
synchronization.
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2 Notations

An asynchronous product of n deterministic automata

Ai = 〈Qi, Σi, q0i , δi : Qi ×Σi → Qi〉

is a nondeterministic automaton:

A1 ⊗ · · · ⊗ An = 〈Q,Σ, q, δ : Q×Σ → P(Q)〉

where: Q = Q1 × · · · ×Qn; Σ =
⋃
i=1,...,nΣi; q = (q01 , . . . , q

0
n); and δ is defined

by:

t ∈ δ(s, a) iff for some i, ti = δi(si, a) and for all j �= i we have tj = sj .

Observe that the product automaton can be non deterministic because the
alphabets Σi are not necessarily disjoint.

We define a simulation relation on nondeterministic automata in a standard
way. Take two nondeterministic automata A = 〈QA, Σ, q0A, δA : QA × Σ →
P(QA)〉 and B = 〈QB, Σ, q0B, δB : QB × Σ → P(QB)〉 over the same alphabet.
The simulation relation �⊆ QA×QB is the biggest relation such that if qA � qB
then for every a ∈ Σ and every q′A ∈ δA(qA, a) there is q′B ∈ δB(qB , a) such that
q′A � q′B. We write A � B if q0A � q0B.

Problem: Given n deterministic automata A1, . . . ,An and a deterministic au-
tomaton B decide if B � A1 ⊗ · · · ⊗ An.

We will show that this problem is Exptime-complete. It is clearly in Exptime
as one can construct the product A1 ⊗ · · · ⊗ An explicitly and calculate the
biggest simulation relation with B. The rest of this paper will contain the proof
of Exptime-hardness. We will start with the Pspace-hardness, as this will allow
us to introduce the method and some notation.

3 Pspace-Hardness

We will show Pspace-hardness of the problem by reducing it to the existence of
a looping computation of a linearly space bounded deterministic Turing machine.
The presented proof of the Pspace bound has the advantage to generalize to the
encoding of alternating machines that we will present in the following section.

Fix a deterministic Turing machine M working in space bounded by the size
of its input. We want to decide if on a given input the computation of the
machine loops. Thus we do not need any accepting states in the machine and
we can assume that there are no transitions from rejecting states. We denote by
Q the states of M and by Γ the tape alphabet of M . A configuration of M is a
word over Γ ∪ (Q × Γ ) with exactly one occurrence of a letter from Q × Γ . A
configuration is of size of n if it is a word of length n. Transitions of M will be
denoted as qa −→ q′bd, where q, q′ are the old/new state, a, b the old/new tape
symbol and d ∈ {l, r} the head move.
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Suppose that the input is a word w of size n. We will construct automata
A1, . . . ,An and B such that B � A1 ⊗ · · · ⊗ An iff the computation of M on w
is infinite.

We start with some auxiliary alphabets. For every i = 1, . . . , n let

Γi = Γ × {i} and Δi = (Q× Γi) ∪ (Q× Γi × {l, r}) .

We will write ai instead of (a, i) for elements of Γi. Let also Δ =
⋃
i=1,...,nΔi.

The automaton Ai = 〈Qi, Σi, q0i ,−→〉 is defined as follows:

– The set of states is Qi = Γ∪(Q×Γ )∪{
}, and the alphabet of the automaton
is Σi = Δ.

– We have transitions:
• a qai−→ qa, for all a ∈ Γ and q ∈ Q,

• qa q
′bid−→ b, for qa→ q′bd the transition of M on qa (there is at most one).

• From a, transitions on letters in Δi \ {qai : q ∈ Q} go to 
. Similarly,
from qa transitions on Δi \ {qbid} go to 
 if there is a transition of
M on qa; if not, then qa has no outgoing transitions. From 
 there are
self-loops on all letters from Δ.

– For i = 2, . . . , n the initial state of Ai is wi, the i-th letter of w; for A1 the
initial state is q0w1, i.e., the initial state of M and the first letter of w.

Figure 1 shows a part of Ai:

� qa

a b

qai

Δi
\ {q

ai
: q

∈ Q}

Δi \ {q′bid}

q′bid

Δ

Fig. 1. Part of Ai

The idea is classical: automaton Ai controls the i-th tape symbol, whereas au-
tomaton B defined below is in charge of the control part of M . The challenge is to
do this without using any synchronization between adjacent automata Ai,Ai+1.
Next, we introduce an automaton K that will be then used to define B. The set
of states of K is QK = {s, e} ∪ (Q×

⋃
Γi × {l, r}); the initial state is s and the

final one e; the alphabet is Δ; the transitions are defined by:

– s
q′bir−→ q′bir for i = 1, . . . , n− 1, whenever we have a transition qa→ q′br in

M for some state q and some letter a;
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s e

q′bi+1l

q′bir

q′bi+1l

q′bir

q′ci

q′ci+1

Fig. 2. Automaton K

– s
q′bi+1l−→ q′bi+1l for i = 2, . . . , n, whenever we have a transition qa → qbl in

M for some state q and some letter a;

– q′bir
q′ci+1−→ e and q′bi+1l

q′ci−→ e for all c ∈ Γ .

We define B as the minimal deterministic automaton recognizing (L(K))∗. In
other words, B is obtained by gluing together states s and e. Figure 2 is a schema
of the automaton K.

Remark 1. All Ai and B are deterministic automata of size polynomial in n.
The input alphabets of the Ai are almost pairwise disjoint: the only states with
common labels on outgoing transitions are the 
 states.

Definition 1. We say that a configuration C of size n of M corresponds to a
global state s of A1 ⊗ · · · ⊗ An iff si = C(i) for i = 1, . . . , n; in other words, if
the state of Ai is the same as the i-th letter of C.

Definition 2. We say that a global state s of A1 ⊗ · · · ⊗ An is proper when
there is no 
-state in s.

Lemma 1. If s is a proper state then for every letter a ∈ Δ there is at most
one transition of A1⊗ · · · ⊗An from s on a. Once the automaton enters a state
that is not proper it stays in non proper states.

It is easy to see that from a non proper state, A1 ⊗ · · · ⊗ An can simulate any
state of B. The reason is that from 
, any move on letters from Δ is possible.

Lemma 2. Suppose that A1 ⊗ · · · ⊗ An is in a state s that corresponds to a
configuration C of M .

– If C is a configuration with no successor, then there is a word v ∈ L(K) that
cannot be simulated by A1 ⊗ · · · ⊗ An from s.

– Otherwise the successor configuration C � C′ exists, and there is a unique
word v ∈ L(K) such that s

v−→ t and t is proper. Moreover t corresponds
to C′. All other words from L(K) lead to non proper configurations of A1 ⊗
· · · ⊗ An.
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Proof. For the first claim, assume that s corresponds to a configuration, thus
there is exactly one i such that Ai is in a state from Q×Γ . The other automata
are in states from Γ .

If C is terminal then Ai is in a state qa which has no outgoing transition.
This means that this state can simulate no move on letters q′bir, for q′ ∈ Q and
bi ∈ Γi (and such a move exists in K, as the machine M must have a move to
the right if it is nontrivial). All other automata are also not capable to simulate
q′bir as they can do only moves on letters Δj for j �= i.

Now suppose that C � C′. To avoid special, but simple, cases suppose that the
position i of the state is neither the first nor the last. Let si = qa and suppose
also that qa → q′br is the move of M on qa. The case when the move is to the
left is similar.

The only possible move of K from s which will put A1⊗· · ·⊗An into a proper
state is q′bir. This makes Ai to change the state to b and it makes K to change
the state to q′bir. From this latter state the only possible move of K is on letters
q′c′i+1 for arbitrary c′ ∈ Γ . Suppose that Ai+1 is in the state c = si+1 ∈ Γ , then
all moves of K on q′c′i+1 with c′ �= c can be matched with a move to 
 of Ai+1.
On q′ci+1 the automaton Ai+1 goes to q′c and automaton K goes to e. This way
the state in the configuration is changed and transmitted to the right. We have
that the new state of A1 ⊗ · · · ⊗ An corresponds to the configuration C′.

Lemma 3. We have B � A1 ⊗ · · · ⊗ An iff M has an infinite computation.

Proof. Recall thatB is the minimal deterministic automaton recognizing (L(K))∗,
and has initial state s. The initial state ofA1⊗ · · ·⊗An corresponds to the initial
configurationC0 ofM . We show that s � t with t corresponding to a configuration
C of M , iff the computation of M starting in C is infinite.

From a configuration C, machine M has only one computation: either infinite,
or finite that is blocking. Suppose that the computation from C has at least one
step and let C1 be the successor configuration. By Lemma 2 from state s there
is exactly one word v1 ∈ L(K) such that A1 ⊗ · · · ⊗ An in order to simulate
it is forced to go to a proper state t1. Morover t1 corresponds to C1. On all
other words from L(K), the product A1 ⊗ · · · ⊗ An can go to a non proper
state and from there it can simulate any future behaviour of B. If C1 has no
successor configuration then, again by Lemma 2, there is a word in L(K) that
cannot be simulated by A1 ⊗ · · · ⊗ An from t1. If C1 has a successor then we
repeat the whole argument. Thus the behaviour of B from s can be simulated
by A1 ⊗ · · · ⊗ An from the state corresponding to C iff the machine M has an
infinite computation starting from C.

One can note that the construction presented in this section uses actions that
are common to several processes in a quite limited way: the only states that
have common outgoing labels are the 
 states from which all behaviours are
possible. This observation motivates the question of the complexity when the
automata A1, . . . ,An have pairwise disjoint alphabets. With this restriction, the
simulation problem can be solved efficiently:
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Theorem 1. The following question can be solved in polynomial time:
Input: n deterministic automata A1, . . . ,An over pairwise disjoint input al-

phabets, and a deterministic automaton B.
Output: decide if B � A1 ⊗ · · · ⊗ An.

Proof. Let Ci be a automaton with a single state 
, and with self-loops on every
letter from the alphabet Σi of Ai. We write A(i) for the asynchronous product
of all Cj , j �= i, and of Ai. Similarly, t(i) will denote t with all components but i
replaced by 
. Suppose now that p is a state of B, and t a state of A1⊗· · ·⊗An.
We write p �i t if p is simulated by t(i) in A(i). Notice that since B and Ai
are both deterministic, we can decide if p ��i t in logarithmic space (hence in
polynomial time), by guessing simultaneously a path in B and one in Ai.

We show now that p � t in A1 ⊗ · · · ⊗ An iff p �i t for all i.
If p � t, then all the more p � t(i), since Cj can simulateAj for all j = 1, . . . , n.

Conversely, assume that p �i t for all i, but p �� t. This means that there exist
computations p a1...ak−→ p′ in B, t

a1...ak−→ u in A1 ⊗ · · · ⊗ An and a letter a ∈ Σi
for some i, such that p′ has an outgoing a-transition, but ui does not (in Ai).
Clearly, we also have a computation t(i)

a1...ak−→ u(i) in A(i). Since ui has no
outgoing a-transition, so neither does u(i), which contradicts p �i t.

4 Exptime-Hardness

This time we take an alternating Turing machine M working in space bounded
by the size of the input. We want to decide if M has an infinite computation.
This means that the machine can make choices of existential transitions in such a
way that no matter what are the choices of universal transitions the machine can
always continue. Clearly, one can reduce the word problem to this problem, hence
it is Exptime-hard (see [6]; for more details on complexity see any standard
textbook on complexity).

We will assume that M has always a choice between two transitions, i.e., for
each non blocking state/symbol pair qa there will be precisely two distinct tuples
q′b′d′, q′′b′′d′′ such that qa → q′b′d′ and qa → q′′b′′d′′. If q is existential then
it is up to the machine to choose a move; if q is universal then the choice is
made from outside. To simplify the presentation we will assume that d′ = d′′,
i.e., both moves go in the same direction. Every machine can be transformed to
an equivalent one with this property. We will also assume that the transitions
are ordered in some way so we will be able to say that qa → q′b′d is the first
transition and qa→ q′′b′′d is the second one.

Suppose that the input word is w of size n. We will construct automata
A′1,A′′1 , . . . ,A′n,A′′n and B such that B is simulated by A′1⊗A′′1 · · ·⊗A′n⊗A′′n iff
there is an infinite alternating computation of M on w. The main idea is that
automata A′i and A′′i control the i-th tape symbol, as in the previous section,
and each one is in charge of one of the two possible transitions (if any) when the
input head is at position i in an existential state (universal moves are simpler).
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We will modify a little the alphabets that we use. Let

Δ′i =(Q× Γi) ∪ (Q× Γi × {l, r} × {1})
Δ′′i =(Q× Γi) ∪ (Q× Γi × {l, r} × {2})

We then put Δi = Δ′i ∪Δ′′i , Δ =
⋃
iΔi, Δ′ =

⋃
iΔ
′
i and Δ′′ =

⋃
iΔ
′′
i .

The automaton A′i is defined as follows:

– The set of states is Q′i = {
}∪ Γ ∪ (Q× Γ )∪ (Q×Γ ×{l, r}), the alphabet
of the automaton is Σ′i = Δ ∪ {ζ}; where ζ is a new letter common to all
automata.

– We have the following transitions:
• a qai−→ qa for all a ∈ Γ and q ∈ Q,

• qa q′b′id1−→ b′ and qa
q′′b′′i d1−→ b′′ if q is an universal state and qa → q′b′d,

qa→ q′′b′′d are the two transitions from qa. We have also transitions to

 on all the letters from Δ′i \ {q′b′id1, q′′b′′i d1}.
• qa ζ−→ q′b′d

q′b′id1−→ b′ and qa
q′′b′′i d1−→ b′′ if q is an existential state and

qa → q′b′d, qa → q′′b′′d are the first and the second transitions from
qa, respectively. We have also transitions to 
 on all the letters from
Δ′i \ {q′b′id1, q′′b′′i d1}. From q′b′d all transitions on Δ′i \ {q′b′id1} go to 
.
• From a, transitions on letters in Δ′i \ {qai : q ∈ Q} go to 
. If qa is

terminal then there are no outgoing transitions from qa. From 
 there
are self-loops on all letters from Δc := Δ ∪ {ζ}.

– The initial state of A′i is wi, the i-th letter of w except for A1 whose initial
state is q0w1, the initial state of M and the first letter of w.

Figure 3 below presents parts of A′i corresponding to universal and existential
states.

The automaton A′′i is the same as A′i with the difference that we have q′b′d2
instead of q′′b′′d1, q′′b′′d2 instead of q′b′d1 (notice the change of primes and
double primes), and Δ′′ instead of Δ′.

Next, we define a new automatonK that will be used to define new automaton
B. The states of K are

QK = {s, e, choice} ∪ (Q×
⋃

i

Γi × {l, r})

plus some auxiliary states to implement transitions on two letters at a time. We
will write transitions with two letters on them for readability. The initial state is
s and the final one is e. The alphabet is ΣK =

⋃
Σi. The transitions are defined

by (cf. Figure 4):

– s
ζ−→ choice ;

– s
(q′bir1)(q

′bir2)−→ q′bir whenever we have a transition qa→ q′br in M for some
universal state q and some letter a, and similarly from choice instead of s
when q is existential;
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Fig. 3. Parts of the automaton A′
i corresponding to universal and existential states q,

respectively. The alphabet Δc is Δ ∪ {ζ}.

– s
(q′bi+1l1)(q

′bi+1l2)−→ q′bi+1l whenever we have a transition qa→ q′bl in M for
some universal state q and some letter a, and similarly from choice instead
of s when q is existential;

– q′bir
(q′ci+1)

2

−→ e and q′bi+1l
(q′ci)

2

−→ e for all c ∈ Γ .

We define B as the minimal deterministic automaton recognizing (L(K))∗. It is
obtained by gluing together states s and e.

Remark 2. All A′i, A′′i and B are deterministic and of size polynomial in n.

Definition 3. A configuration C of size n corresponds to a global state s of
A′1 ⊗A′′1 · · · ⊗ A′n ⊗A′′n if s2i = s2i−1 = C(i) for i = 1, . . . , n; in other words, if
the states of A′i and A′′i are the same as the i-th letter of C.

Definition 4. We say that a global state s of A′1 ⊗A′′1 · · · ⊗A′n ⊗A′′n is proper
when 
 does not appear in s.

It is easy to see that from a non proper state, A′1 ⊗ A′′1 · · · ⊗ A′n ⊗ A′′n can
simulate any state of B. The reason is that from 
, any move on letters from Δc

is possible.

Lemma 4. Suppose that A′1⊗A′′1 · · ·⊗A′n⊗A′′n is in a state s corresponding to
a configuration C of M . If C has no successor configuration then there is a word
v ∈ L(K) that cannot be simulated by A′1⊗A′′1 · · ·⊗A′n⊗A′′n from s. Otherwise,
C has two successor configurations C � C′ and C � C′′. We have two cases:
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q′bi+1l q′bir

s

choice

e

(q
′ bi+

1l1
)(q
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1l2

) (q ′
bir1)(q ′

bir2)

(q′bi+1l1)(q
′bi+1l2) (q′bir1)(q
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ζ

(q ′
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′ ci+

1)
(q
′ ci+

1)

Fig. 4. Automaton K

– If C is universal then there are two words v′ and v′′ in L(K) that lead from s
to proper states only, one state for v′ and one for v′′. These states correspond
to C′ and C′′, respectively. On all other words from L(K), non proper states
can be reached from s.

– If C is existential, then on the letter ζ the automaton A′1⊗A′′1 · · ·⊗A′n⊗A′′n
can reach only one of the two states s′ or s′′. From s′ there is a word v′ such
that ζv′ ∈ L(K) and on v′ from s′ the automaton A′1 ⊗ A′′1 · · · ⊗ A′n ⊗ A′′n
can reach a unique state, which moreover corresponds to C′. Similarly for
s′′ and C′′. On all words from L(K) that are different from ζv′ and ζv′′,
non proper states can be reached from s.

Proof. As s corresponds to the configuration C, there is some i such that both
automata A′i and A′′i are in state qa, for some q ∈ Q and a ∈ Γ , and all other
automata are in states from Γ .

If C is a configuration without successor, then the state qa in A′i and A′′i
does not have any outgoing transition. Thus these automata cannot simulate
the ζ transition of K from s. No other automaton A′j , or A′′j can simulate the ζ
transition either, as they are all in states from Γ .

Suppose that C is an universal configuration with two possible transitions to
the right, qa → q′b′r and qa → q′′b′′r. The case when the moves are to the left
is similar. In A′i from the state qa we have a transition on q′b′ir1 leading to b′

and on q′′b′′i r1 leading to b′′. Similarly for A′′i , but on q′b′ir2 and q′′b′′i r2. These
transitions can simulate both transitions (q′b′ir1)(q′b′ir2) and (q′′b′′i r1)(q′′b′′i r2)
that are possible from s in K. (All other transitions from s in K lead from s to
a non proper state of A′1⊗A′′1 · · ·⊗A′n⊗A′′n.) Let us focus only on the first case,
when (q′b′ir1)(q′b′ir2) is executed in K and the state q′b′ir is reached. From this
state only transitions (q′c′i+1)2 are possible, for all c′ ∈ Γ . Suppose that A′i+1
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and A′′i+1 are in state c ∈ Γ . Transition (q′ci+1)2 of K is simulated by moves to
q′c in both A′i+1 and A′′i+1. This way the new state is transferred to the right.
Transitions (q′c′i+1)2 where c �= c′ are simulated in A′1 ⊗ A′′1 · · · ⊗ A′n ⊗ A′′n by
moves of A′i+1 and A′′i+1 to 
.

Suppose that C is an existential configuration, with possible transitions qa→
q′b′r and qa → q′′b′′r. The case when moves are to the left is similar. Consider
first the transition of K from s that corresponds to the letter ζ. Both A′i and
A′′i can simulate this transition: the first goes to state q′b′r, and the second
goes to q′′b′′r. Assume that it is the transition of A′i that is taken; the other
case is symmetric. We get to the position when K is in the state choice , A′i is
in the state q′b′r and A′′i in the state qa. From choice , automaton K can do
(q′b′ir1)(q′b′ir2) that can be simulated by the transitions of A′i and A′′i (every
other transition of K can be simulated by a move of A′1 ⊗A′′1 · · · ⊗ A′n ⊗A′′n to
a non proper state). Both automata reach the state b′. Automaton K is now in
state q′bir from where it can do (q′ci+1)2 for any c ∈ Γ . The result of simulating
these transitions while reaching a proper state is the transfer of the state to the
right, in the same way as in the case of the universal move. Finally, it remains to
see what happens if K makes a move from s that is different from ζ. In this case,
at least one of the automata A′i, A′′i can simulate the corresponding transition
on (peid1), (peid2) respectively, by going to state 
, since we suppose that in
any configuration of M , the two outgoing transitions are distinct. Hence, a non
proper state can be reached.

Theorem 2. The following problem is Exptime-complete:
Input: deterministic automata A1, . . . ,An and a deterministic automaton B.
Output: decide if B � A1 ⊗ · · · ⊗ An.

Proof. We use the construction presented above. By Lemma 4 we can show
similarly to the previous section, that the initial state s of B can be simulated
from a state t of A′1⊗A′′1 · · ·⊗A′n⊗A′′n that corresponds to a configuration C of
the alternating Turing machine M , iff M has an infinite alternating computation
from C. The problem is clearly in Exptime as the state space of A′1 ⊗A′′1 · · · ⊗
A′n ⊗A′′n can be constructed in Exptime.

We conclude the section by showing that Theorem 2 still holds under the as-
sumption that the alphabet of the automata is of constant size.

Theorem 3. Let Σ be a fixed alphabet of at least 2 letters. The following problem
is Exptime-complete:

Input: deterministic automata A1, . . . ,An and a deterministic automaton B
over the input alphabet Σ.

Output: decide if B � A1 ⊗ · · · ⊗ An.

Proof. We reduce directly from Theorem 2. Suppose that the input alphabet of
all automata Ai,B is Σ × {1, . . . ,m}, for some m. Moreover, let S be the set of
states of B and let Q = Q1×· · ·×Qn be the set of global states of A1⊗· · ·⊗An.
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In each automaton Ai, B we replace every transition s al−→ t by a sequence of
transitions with labels from Σ ∪ {#, $} as follows:

s
a−→ (stl0)

#−→ (stl1)
#−→ (stl2) · · · #−→ (stll) $−→ t

The (l+ 1) states (stl0), . . . , (stll) are new. Let A′i,B′ be the automata obtained
from Ai, B, with state space Q′ and S′, respectively.

Take �, the largest simulation relation from B to A1 ⊗ · · · ⊗ An. We show
how to extend � to �′ such that �′ is a simulation relation from B′ to A′1 ⊗
· · · ⊗ A′n (not necessarily the largest one). Let �′ be the union of � with the
set of all pairs ((stlk),u′), where s, t ∈ S, u′ = (u′1, . . . , u

′
n) ∈ Q′, and such

that:

– s
al−→ t and v

al−→ w for some a ∈ Σ, v = (v1, . . . , vn) and w = (w1, . . . , wn)
such that s � v, t � w,

– there is some i with u′i = (viwilk), and u′j = vj = wj for j �= i.

It is immediate to check that �′ is a simulation relation. First, (old) states from
S can only be simulated by (old) states from Q. Second, a new state (stlj) of
B can be simulated only by states u′ ∈ Q′ \Q. It can be shown easily that the
largest simulation relation from B′ to A′1 ⊗ · · · ⊗ A′n coincides with �′ (hence
with �) on the set S ×Q of pairs of old states.

5 Conclusions

We have shown an Exptime lower bound for the composition of e-services that
are described as a fully asynchronous product of finite state machines. Thus,
we answer the question left open in [2]. Since our lower bound holds for the
simplest model one can think of (no synchronization at all), it also applies to
richer models, such as products with synchronization on actions as in [10] or
communicating finite-state machines (CFSM) as in [9,8]. It is easy to see that
the simulation of a finite-state machine by a CFSM A with bounded message
queues is in Exptime, since the state space of A is exponential in this case.
Hence, this problem, as well as any of its variants with some restricted form of
communication, is Exptime-complete as well.

It remains open whether the bisimulation problem for a finite automaton
and a fully asynchronous product of finite automata is also Exptime-hard.
Another interesting question is how far one can relax the restrictions on e-
services given by communicating finite-state machines, in order to preserve
decidability.

Acknowledgement. We thank the anonymous referees for interesting com-
ments and suggestions for improvement.
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Abstract. We give logical characterizations of bisimulation relations for
the probabilistic automata of Segala in terms of three Hennessy-Milner
style logics. The three logics characterize strong, strong probabilistic and
weak probabilistic bisimulation, and differ only in the kind of diamond
operator used. Compared to the Larsen and Skou logic for reactive sys-
tems, these logics introduce a new operator that measures the probability
of the set of states that satisfy a formula. Moreover, the satisfaction re-
lation is defined on measures rather than single states.

We rederive previous results of Desharnais et al. by defining sublogics
for Reactive and Alternating Models viewed as restrictions of probabilis-
tic automata. Finally, we identify restrictions on probabilistic automata,
weaker than those imposed by the Alternating Models, that preserve the
logical characterization of Desharnais et al. These restrictions require
that each state either enables several ordinary transitions or enables a
single probabilistic transition.

1 Introduction

Bisimulation relations are one of the simplest tools for the comparison of con-
current systems. Though they are quite detailed in their distinguishing power,
they are mathematically simple and yet powerful, thus attracting a lot of interest
in the literature. Axiomatizations and logical characterizations of relations are
other important tools to improve our understanding of systems. In particular,
axiomatizations permit to understand algebraic and compositional properties of
processes, while logical characterizations permit to understand what properties
are preserved under different equivalences or preorders. Axiomatizations and log-
ical characterizations are also very useful for comparative analysis of relations.

Randomization within concurrent systems has received considerable attention
as well in the literature (cf. the surveys in [1,16,13]). Our interest in this paper is
in the model of Probabilistic Automata [12], which are a conservative extension of
Labeled Transition Systems. They are also known as the non-alternating model
of concurrency as opposed to the Labeled Concurrent Markov Chains of [7,11],
called alternating models. Specifically, the alternating models impose some dis-
tinction between states that enable several ordinary transitions and states that
enable a unique probabilistic transition, while in the non-alternating model each
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state may enable several probabilistic transitions. In other words, in the alternat-
ing models there is a total separation between probability and nondeterminism,
while in the non-alternating models probability and nondeterminism coexist in
the same states.

The goal of this paper is to study logical characterizations of bisimulation rela-
tions for probabilistic automata in the context of Hennessy-Milner style logics [8].
Logical characterizations have been studied already by Larsen and Skou [10] for
reactive systems [6] and by Desharnais et al. [5] for labeled concurrent Markov
chains (alternating model) [7,11]. These logics are derived from the Hennessy-
Milner logic by replacing the diamond operator with a probabilistic diamond
operator that measures bounds on the probability of performing an externally
visible action and then satisfying some formula. Unfortunately, such characteri-
zations are not adequate for probabilistic automata where, as opposed to reactive
systems and alternating models, each state may enable both nondeterministic
and probabilistic transitions.

Our main contribution is a Hennessy-Milner logic that keeps the original di-
amond operator of [8], is defined on measures over states rather than on single
states and includes a new operator [ϕ]p that is true whenever the probability of
the states that satisfy a formula ϕ is at least p. Thus, for instance, a conjunc-
tion of formulas with such operator can characterize entire probability measures.
This means that our logical characterization permits to describe situations where
different probability measures can be reached from a given state via transitions
labeled by the same action. We study three logics for strong, strong probabilistic
and weak probabilistic bisimulation, respectively, each one differing only on the
definition of the diamond operator to account for the kind of transitions that
are used in the definition of the bisimulation relation.

We then view the logics studied for the reactive and alternating models as
restrictions of our logic, where ♦paϕ can be encoded by ♦a[ϕ]p, and we rederive
the known logical characterizations for such systems. In particular, for the alter-
nating models we study minimal restrictions to impose on probabilistic automata
so that the logical characterizations of [5] continue to hold. It turns out that it is
sufficient to require that each state that enables a probabilistic transition enables
only one transition, that is, each probabilistic choice should have a state that
describes it. Indeed, by this restrictions, we obtain a model that is more general
than the alternating models of [11,5], and the characterization of bisimulation
in terms of maximal probabilities [11,5], the key technical machinery to derive
the corresponding logical characterizations, continues to hold.

The paper is organized as follows. Section 2 gives some preliminary mathe-
matical notions; Section 3 defines probabilistic automata and related concepts;
Section 4, recalls the definition for Hennessy-Milner logic [8] and introduces our
logics for probabilistic automata; Section 5 recalls the results for reactive and
alternating systems and compares them with our results; Section 6 gives two
logics for strong and weak probabilistic bisimulation for the restriction of prob-
abilistic automata where states that enable probabilistic transitions enable only
one transition, which embed all known alternating models.
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2 Mathematical Preliminaries

Given a set S, a σ-algebra over S is a family Σ of subsets of S that is closed under
complementation and countable union. A measurable space is the pair (S,Σ),
and each element of Σ is called a measurable set. The σ-algebra generated by a
family G of subsets of S is the smallest σ-algebra including G, and is denoted
by σ(G). Given a measurable space (S,Σ), a measure over (S,Σ) is a function
μ : Σ → R

≥0 such that, for every countable family {Ai}I ⊆ Σ of pairwise disjoint
measurable sets, μ(∪IAi) =

∑
I μ(Ai). A (sub-)probability measure is a measure

μ : Σ → [0, 1] for which (μ(S) ≤ 1) μ(S) = 1. Probability measures are ranged
over by μ, η, . . . and we propagate indices and primes where necessary. A set
A ⊆ S is called a support for a measure μ on Σ if μ(S − A) = 0. Denote by
(SubDisc(S)) Disc(S) the set of discrete (sub-)probability measures over S and,
given an element s ∈ S, denote by δ(s) the probability measure that assigns
probability 1 to {s}. This is called the Dirac measure on s. Given a countable
set of distributions {μi}I and a set {pi}I of real numbers in [0, 1] such that∑

I pi = 1, define the convex combination
∑
I piμi of {μi}I as the probability

measure μ such that, for each set X , μ(X) =
∑

I piμi(X).
Sometimes it is necessary to lift a relation over sets to a relation over measures

on sets. We give here a definition proposed in [12] using an idea of [9]. Let
R⊆ X × Y . The lifting of R is a new relation L(R)⊆ Disc(X) × Disc(Y ),
such that μ1 L(R) μ2 iff there exists a weight function (or witness function)
ω : X × Y −→ [0, 1] such that the following lifting conditions hold:

1. ∀(x, y) ∈ X × Y , if ω(x, y) > 0 then x R y;
2. ∀x ∈ X,∑y∈Y ω(x, y) = μ1(x);
3. ∀y ∈ Y,∑x∈X ω(x, y) = μ2(y).

If R is an equivalence relation, then for each pair of measures μ1, μ2, it can be
shown that μ1 L(R) μ2 if and only if μ([t]) = μ′([t]) for each equivalence class [t]
of R. In the following we will use R instead of L(R) if it is clear from the context
that we refer to a lifted relation. A set E is R-closed if E = {s | ∃r s.t. s R r},
that is, it is a collection of equivalence classes of R.

A subset C of a metric space (X, d) is compact if every subset S of C has
a limit point in C, i.e., for each S ⊆ C, there exists l ∈ C such that for each
ε ∈ R

+ there exists x ∈ S such that d(l, x) < ε.

3 Probabilistic Automata

In this section we recall some basic definitions for probabilistic automata, includ-
ing the notions of probabilistic bisimulations. The original definitions appear in
[12], and the bisimulation relations that we use were first proposed in [14] for
probabilistic automata; however, the notion of strong bisimulation is an exten-
sion of the original proposal of [10] for reactive systems.

An automaton is a tuple A = (S,Act,D) where S is the set of states, Act is
the set of actions, and D ⊆ S × Act × S is the transition relation. Each triple
(s, a, s′) ∈ D is called a transition, and is denoted by s

a−→ s′. The set Act is
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partitioned into two sets E,H of external and internal actions, respectively. For
the purpose of this paper we assume that H = {τ}.

Probabilistic automata are conservative extensions of Labeled Transition Sys-
tems where transitions lead to discrete probability measures over states instead
of single states. Indeed, an ordinary automaton can be seen as a probabilistic
automaton where each transition leads to a Dirac measure. A probabilistic au-
tomaton is a tuple P = (S,Act,D), where S is the set of states, Act is the set of
actions, and D is the transition relation, where D ⊆ S ×Act×Disc(S). Denote
a transition (s, a, μ) ∈ D by s

a−→ μ. States and actions are ranged over by
s, r, t, . . . and a, b, c . . ., respectively.

An execution of a probabilistic automaton P is a finite or infinite sequence α =
s0a1s1a2s2 · · · of alternating states and actions, starting with a state and, if the
sequence is finite, ending in a state, where for each i, there exists a measure μ such
that (si, ai+1, μ) ∈ D and μ(si+1) > 0. State s0 is called the first state of α and is
denoted by fstate(α). If α is a finite sequence, then the last state of α is denoted
by lstate(α). Denote by execs(P) the set of executions of P and by execs∗(P) the
set of finite executions of P . Executions are the result of the resolution of both
probabilistic and nondeterministic choices. If we resolve nondeterministic choices
only, then we obtain a structure on which we can study probability measures
over executions. Nondeterminism is resolved in a randomized way by an entity
called scheduler.

A scheduler for a probabilistic automaton P is a function σ : execs∗(P) →
SubDisc(D) such that σ(α)(s, a, μ) > 0 implies s = lstate(α). A scheduler σ
is deterministic if for each finite execution α, σ(α) ≡ 0 or σ(α) = δ(tr), with
tr ∈ D. A scheduler induces a probability measure over executions on a σ-field
whose construction is standard. Specifically, we consider the σ-field generated
by cones, where the cone of a finite execution α, denoted by Cα, is the set of
executions that have α as a prefix, i.e., Cα = {α′ ∈ execs(P) | α ≤ α′}. Fixed a
starting state s0, the measure of a cone Cα, where α = s0a1s1 · · · sk, is defined
as follows:

μ(Cα) =
∏

i∈{0,k−1}

⎛

⎝
∑

(si,ai+1,μ′)∈D
σ(s0a1 · · · aisi)(si, ai+1, μ

′)μ′(si+1)

⎞

⎠ .

Standard measure theoretical arguments ensure that the measure defined on
cones extends uniquely to a measure defined on the generated σ-field.

Let {s a−→ μi}i∈I be a collection of transitions of P , and let {pi}i∈I be a col-
lection of probabilities such that

∑
i∈I pi = 1. Then, the triple {s, a,

∑
i∈I piμi}

is called a combined transition. Combined transitions represent the result of
choosing the transitions randomly from some state s. They are useful in the
definition of probabilistic bisimulations.

We say that s a=⇒ s′ is a weak transition of an automaton A if there is a finite
execution α of A with fstate(α) = s and lstate(α) = s′, and such that trace(α) =
trace(a), where the trace function restricts a sequence to external actions only. In
other words, a weak transition is a way to abstract from internal computation.
For probabilistic automata, consider a measure μ, induced by a scheduler σ from
a starting state s0, that assigns probability 1 to the set of all finite executions
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with trace a. Let μ′ be the measure defined by μ′(s) = μ({α | lstate(α) = s}).
Then s a=⇒ μ′ is a weak combined transition of P . The term “combined” reflects
the fact that σ is a randomized scheduler.

We define three types of bisimulation relations that will be studied in the rest
of this paper. These relations differ for the kind of transitions used.

1. An equivalence relation R⊆ S × S is a strong bisimulation if for each pair
s, r of states such that s R r and for each transition s a−→ μ, there exists μ′

such that r a−→ μ′ and μ R μ′. Denote by ∼ the largest strong bisimulation.
2. An equivalence relation R⊆ S×S is a strong probabilistic bisimulation if for

each pair s, r of states such that s R r and for each transition s a−→ μ, there
exists a combined transition r

a−→ μ′ such that μ R μ′. Denote by ∼p the
largest strong probabilistic bisimulation.

3. An equivalence relation R⊆ S × S is a weak probabilistic bisimulation if for
each pair s, r of states such that s R r and for each transition s a−→ μ, there
exists a weak combined transition r a=⇒ μ′ such that μ R μ′. Denote by ≈p
the largest weak probabilistic bisimulation.

There would be a fourth natural relation that uses weak transitions induced by
deterministic schedulers. However, this relation is not transitive, as shown in [3],
and thus it is not interesting.

We recall an alternative way of defining bisimulation [8] as
⋂
i≥0 ∼n, where

∼0= S × S (all states are related) and for each pair of states s, r, s ∼n+1 r

if for each action a, s a−→ μ implies that there exists μ′ such that r a−→ μ′

and μ ∼n μ′. The same definition style applies to strong and weak probabilistic
bisimulation, as well.

4 Hennessy-Milner Logic for Probabilistic Automata

In this section, we give logical characterizations of bisimulations for probabilistic
automata. We start by recalling the logic from [8]; then we analyze in detail the
logics for strong, strong probabilistic and weak probabilistic bisimulations.

4.1 Hennessy-Milner Logic

The syntax of the Hennessy-Milner Logic [8] is the following:

Lhm ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | ♦aϕ.

The satisfaction relation |=⊆ S × F is defined by structural induction on the
formulas of Lhm as follows:

– s |= � for each state s
– s |= ¬ϕ iff s �|= ϕ
– s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

– s |= ♦aϕ iff there exists a transition s a−→ s′ such that s′ |= ϕ.
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The only non-trivial operator is the “diamond” ♦, which is used to describe the
existence of transitions. It was shown in [8] that the logic Lhm characterizes
strong bisimulation for ordinary automata. In particular, two states s and r of
an automaton are bisimilar if and only if they satisfy the same formulas of Lhm.
If we extend the logic above with a countably infinite conjunction, then the
characterization of strong bisimulation holds also for automata with countably
many states. In this paper we deal with countable state spaces, and therefore
we use an infinitary conjunction operator. However, our results hold for finite
conjunction operators and finite-state spaces.

The logics that we study in this paper share a lot of structure of Lhm, thus,
we introduce here some useful notation. Let ϕ, ψ, . . . range over formulas, and
we define the depth of a formula ϕ as the maximum number of nested diamond
operators that occur in ϕ. Let FL denote the set of the formulas of L, and FL,n
denote the set of the formulas of L of depth at most n. Moreover, denote FL(s)
and FL(μ) as the sets of the formulas of L which are satisfied by the state s and
by the distribution μ, respectively. We define a new relation �
L⊆ S × S such
that s �
L r if and only if FL(s) = FL(r), and similarly we define �
L,n⊆ S × S
as the relation such that s �
L,n r if and only if FL,n(s) = FL,n(r). We drop the
subscript L whenever it is clear from the context. Finally, denote by [[ϕ]] the set
of all the states that satisfy a formula ϕ.

4.2 Hennessy-Milner Logic for Strong Bisimulation

The main difference between probabilistic automata and ordinary automata is
that in probabilistic automata the target of each transition is a probability mea-
sure. Thus, the modal operators defined for probabilistic automata must take
into account this possibility. Moreover from every state there might be several
outgoing transitions labeled by the same action. Thus, a naive extension of ♦,
where we study the probability of a formula in the target of a transition [10]
does not suffice. Our proposal is to define a new operator that, together with
conjunction, can characterize exactly a probability measure. The syntax of the
logic LN for strong bisimulation is the following:

LN ::= � | ¬ϕ |
∧

I

ϕi | ♦aϕ | [ϕ]p.

The semantics of this logic is given in terms of probability measures over states
rather than single states. Specifically, the satisfaction relation is defined as
follows:

– μ |= � for each measure μ
– μ |= ¬ϕ iff μ �|= ϕ
– μ |=

∧
I ϕi iff for each i ∈ I, μ |= ϕi

– μ |= ♦aϕ iff for each s ∈ supp(μ) there exists a transition s
a−→ η such that

η |= ϕ

– μ |= [ϕ]p iff μ([[ϕ]]) ≥ p.
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The first three clauses are trivial extensions of those of Hennessy-Milner logic.
The diamond operator is exactly that of Lhm if we restrict our study to Dirac
distributions, and the operator [·]p expresses the probability of a set of states
with respect to a given probability measure.

The rest of this section is dedicated to the proofs of soundness and complete-
ness of LN . We start with a few preliminary lemmas that are used to prove the
soundness and completeness of LN . This first lemma states that, when consider-
ing logics with negation, if two states satisfy two different sets of formulas, then
none of these sets is contained in the other.

Lemma 1. Given a logic with negation, for each pair of states s and r of a
probabilistic automaton, if F(s) �= F(r) then F(s) �⊆ F(r).

The second lemma shows that the states of a probabilistic automaton satisfy the
same sets of formulas of depth zero.

Lemma 2. For each pair of states s, r, F0(s) = F0(r).

The third lemma relates diamond formulas with probability measures and the
states in their support.

Lemma 3. For each measure μ, μ |= ♦aϕ iff for each s ∈ supp(μ), s |= ♦aϕ.

The last lemma states that the lifting of �
n preserves the sets of formulas sat-
isfied by two probability distributions μ and μ′.

Lemma 4. Let R be a subset of �
n. Then, for each pair of distributions μ, μ′,
μ R μ′ implies Fn(μ) = Fn(μ′).

Proof. Without loss of generality, let μ |= ϕ, where ϕ ∈ Fn. We prove that
μ′ |= ϕ by induction on the structure of ϕ.

– If ϕ = �, then the result is trivial.
– If ϕ = ♦aψ, then, by Lemma 3, for each s ∈ supp(μ), s |= ϕ. We show that
s′ |= ϕ for each s′ ∈ supp(μ′). Then, μ′ |= ϕ follows again by Lemma 3. Let
s′ ∈ supp(μ′), and let [s′] be the equivalence class of R containing s′. Since
μ′(s′) > 0 and μ R μ′, then μ′([s′]) > 0 and μ([s′]) > 0. Thus, there exists
an element s ∈ supp(μ) such that s R s′. By hypothesis, Fn(s) = Fn(s′).
Since s ∈ supp(μ), then s |= ϕ and since ϕ ∈ Fn, then s′ |= ϕ as needed.

– If ϕ = [ψ]p, then μ([[ψ]]) ≥ p. Since ψ ∈ Fn, then [[ψ]] is a union of equivalence
classes of R (by hypothesis, each formula of Fn is satisfied either by all or
none of the states of an equivalence class of R). Since μ R μ′, then each
equivalence class of R has the same measure according to μ and μ′. Thus,
μ([[ψ]]) = μ′([[ψ]]). Since μ([[ψ]]) ≥ p, then also μ′([[ψ]]) ≥ p and thus, μ′ |= [ψ]p
as needed.

– If ϕ = ¬ψ, then μ �|= ψ. By induction, since ψ ∈ Fn, μ′ �|= ψ. Thus, μ′ |= ¬ψ.
– If ϕ =

∧
I ψi, then for each i ∈ I, μ |= ψi. Since ψi ∈ Fn for each i ∈ I, then

by induction, μ′ |= ψi. Thus, μ′ |=
∧
I ψi.

We are now ready to prove the soundness and completeness of the logic LN for
probabilistic automata.
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Theorem 1. Given the logic LN , for each pair of states s, r of a probabilistic
automaton, s ∼ r iff F(s) = F(r).

Proof. By induction on n, we show that s ∼n r iff Fn(s) = Fn(r) for each n ≥ 0.
The base case follows trivially by Lemma 2 and the definition of ∼0 (all states
are related). For the inductive step we prove separately the two directions of our
claim.

(=⇒). Let s ∼n+1 r. We show by induction on the structure of a formula
ϕ ∈ Fn+1 that s |= ϕ iff r |= ϕ. Let s |= ϕ (the case for r |= ϕ is symmetric). If
ϕ = �, then r |= ϕ trivially. If ϕ = ¬ψ, then s �|= ψ and by structural induction,
r �|= ψ. Thus, r |= ¬ψ. If ϕ =

∧
I ψi, then for each i ∈ I, s |= ψi. By structural

induction, r |= ψi for each i ∈ I and thus, r |= ϕ. If ϕ = [ψ]p, then either p = 0
or s |= ψ. In the first case r |= ϕ trivially; in the second case, by structural
induction, r |= ψ and thus, r |= ϕ. If ϕ = ♦aψ, then ψ ∈ Fn. By definition,
there exists a transition s a−→ μ such that μ |= ψ. Since s ∼n+1 r, there exists a
distribution μ′ and a transition r

a−→ μ′ such that μ ∼n μ′. By induction on n,
∼n⊆�
n. Thus, by Lemma 4 and since μ ∼n μ′, Fn(μ) = Fn(μ′). Since ψ ∈ Fn,
and since μ |= ψ, then also μ′ |= ψ. That is, r |= ♦aψ.

(⇐=). We show that s �∼n+1 r implies Fn+1(s) �= Fn+1(r). Let {[ti]n}I be an
enumeration of the equivalence classes of∼n. By induction on n and by Lemma 1,
for each i, j ∈ I, if i �= j, there exists a formula ϕij ∈ Fn such that ti |= ϕij
and tj �|= ϕij . For each i ∈ I, define ϕi =

∧
j∈I�{i} ϕij . Then ϕi is satisfied only

by the states of [ti]n. Let s �∼n+1 r and suppose, for the sake of contradiction,
that Fn+1(s) = Fn+1(r). Without loss of generality, there exists a transition
s

a−→ μ such that there is no transition r
a−→ μ′ with μ ∼n μ′. For each i ∈ I

let pi = μ([ti]n). Now, define ϕ =
∧
I [ϕi]pi . By definition, μ |= ϕ. Furthermore,

ϕ ∈ Fn. By the semantics of ♦, s |= ♦aϕ. Since ♦aϕ ∈ Fn+1, by hypothesis,
r |= ♦aϕ as well. Thus, there exists a distribution μ′′ such that r a−→ μ′′ and
μ′′ |= ϕ. This means that for each i ∈ I, μ′′([ti]n) ≥ pi. Since

∑
I pi = 1 and

since
∑

I μ
′′([ti]n) = 1, then for each i ∈ I, μ′′([ti]n) = pi. That is, for each i ∈ I,

μ([ti]n) = μ′′([ti]n), which means that μ ∼n μ′′, a contradiction.

4.3 Hennessy-Milner Logic for Strong Probabilistic Bisimulation

In the definition of probabilistic bisimulation, a transition can be matched by
combining transitions. Thus, it is reasonable to believe that the diamond for
strong probabilistic bisimulation should take into account this possibility. Indeed,
the logic LNp for strong probabilistic bisimulation is obtained by replacing the
operator ♦ with ♦· . The syntax of LNp is:

LNp ::= � | ¬ϕ |
∧

I

ϕi | ♦· aϕ | [ϕ]p.

The semantics of the operator ♦· is:

– μ |= ♦· aϕ iff for each s ∈ supp(μ) there exists a combined transition s
a−→ η

such that η |= ϕ.
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Since, as shown in [15], ∼p is weaker than ∼, adding the operator ♦· to LN does
not change its expressivity. Hence, the operator ♦· is weaker than ♦. Soundness
and completeness of LNp are stated by the following theorem.

Theorem 2. Given the logic LNp , for each pair of states s, r of a probabilistic
automaton, s ∼p r iff F(s) = F(r).

Proof outline. Lemma 1, 2, 3 and 4 hold also here. Then, the proof of this
theorem follows the lines of that of Theorem 1, by replacing strong transitions
with combined transitions in the appropriate places.

4.4 Logic for Weak Probabilistic Bisimulation

The definition of the logic LNw follows the same ideas of LNp . We replace the ♦
of LN with operator ♦·w , and the new syntax is:

LNw ::= � | ¬ϕ |
∧

I

ϕi | ♦·waϕ | [ϕ]p.

The semantics of ♦·w is:

– μ |= ♦·waϕ iff for each s ∈ supp(μ) there exists a weak combined transition
s

a=⇒ η such that η |= ϕ.

As observed in the previous section with respect to the new diamond operator
♦· introduced, we can easily infer that the operator ♦·w is weaker than ♦· . As
for strong probabilistic bisimulation, we can prove that LNw characterizes weak
probabilistic bisimulation.

Theorem 3. Given the logic LNw , for each pair of states s, r of a probabilistic
automaton, s ≈p r iff F(s) = F(r).

Proof outline. Lemma 1, 2, 3 and 4 hold also here. Then, the proof of this theorem
follows the lines of that of Theorem 1, by replacing strong transitions with weak
combined transitions in the appropriate places.

5 Hennessy-Milner Logic for Reactive Systems

Reactive systems [6] are essentially deterministic probabilistic automata, i.e.,
for each state and for each label, there exists at most one transition. There is
already a logical characterization of bisimulation for reactive systems by Larsen
and Skou [10]. The syntax of the Larsen and Skou logic is the following:

Lls ::= � | ¬ϕ | ϕ1 ∧ ϕ2 | ♦paϕ,

where p is a rational number in [0, 1]. The only new operator is ♦p, whose
semantics is:

– s |= ♦paϕ iff there exists a transition s a−→ μ such that μ([[ϕ]]) ≥ p.
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Desharnais, Panangaden et al. [4] have shown that negation is not necessary to
characterize bisimulation for reactive systems. Moreover, they have shown that
infinitary conjunction is not needed even if the state space is uncountable, and
can be replaced by a finite conjunction operator. The syntax of their logic is the
following:

LR ::= � | ϕ1 ∧ ϕ2 | ♦paϕ.
It is immediate to see that LR is a sublogic of Lls. We can see the logic LR as a
sublogic of LN as well. Also the operator [·]p is necessary when nondeterminism
is present. However, as shown in the next section, this operator can be dropped
in favor of ♦p if nondeterminism is partially restricted.

6 Hennessy-Milner Logic for Alternating Models

In this section, we define two logics for strong and weak probabilistic bisimulation
for a restriction of probabilistic automata that embeds the alternating models
and we show that the logical characterization of [5] continues to hold.

We say that a probabilistic automaton is alternating if the states that enable a
non-Dirac transition enable only one transition. We call probabilistic those states
that enable non-Dirac transitions, and nondeterministic all the other states.
This definition of alternating probabilistic automaton, indeed, describes a class
of systems that is more general than the labeled concurrent Markov chains of
Hansson [7] and of Philippou et al. [11], since it does not impose any alternation
between nondeterministic and probabilistic states, and it allows probabilistic
transitions to be labeled by external actions. As shown in [15], the notion of
bisimulation of this paper coincides with those of Hansson and of Philippou
et al. when applied to their models. Thus, the logical characterization given
for alternating probabilistic automata is also a logical characterization for the
alternating models [7,11]. We do not handle strong probabilistic bisimulation
explicitly since it coincides with strong bisimulation [15].

6.1 Hennessy-Milner Logic for Strong Bisimulation

Since in alternating probabilistic automata each probabilistic transition is de-
scribed by some state, then intuitively the target measure of a probabilistic
transition that leaves from a state s can be derived just by observing the prob-
ability of reaching each equivalence class from s. For this reason the operator
♦p should suffice. Indeed, bisimulation relations can be characterized in terms of
maximal probabilities of reaching equivalence classes (Lemma 5), and thus, an
operator ♦p suffices. The overall idea of maximal probabilities is taken from [11].
The syntax of the logic LA for strong bisimulation is the following:

LA ::= � | ¬ϕ |
∧

I

ϕi | ♦paϕ.

The semantics of the operator ♦p is exactly the same as for reactive systems.
Note that if we drop the operator [·]p, it is no more necessary to define the
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satisfaction relation on measures, since it can be defined on single states. In a
similar way as in [11], for each action a and for each equivalence class [t] of ∼,
we define μs,a([t]) as the maximal probability to reach [t] from s with a strong
transition labeled a.

Lemma 5. For each pair of states s and r of an alternating automaton, if
μs,a([t]) = μr,a([t]) for each action a and each equivalence class [t] of ∼, then
s ∼ r.
Proof. Let {[ti]}I be an enumeration of the equivalence classes of ∼. Without
loss of generality, we distinguish the following cases.

1. s is nondeterministic. Let s a−→ μ. Then, μ is a Dirac measure δ(s′). Let
k ∈ I be the index of the class such that s′ ∈ [tk]. Then, μ([tk]) = 1. This
means that μ([tk]) = μs,a([tk]). Then, by hypothesis, there exists μ′ such
that μ′([tk]) = μr,a([tk]) and μ′([tk]) = 1. By definition, for each equivalence
class [tj ], μ′([tj ]) = 0. Thus, μ ∼ μ′.

2. s is probabilistic. Then, let s a−→ μ be the only transition from s. By def-
inition, for each i ∈ I, μ([ti]) = μs,a([ti]). If r is probabilistic, then by
hypothesis, r a−→ μ′ is the only transition from r, and μ, μ′ agree on all the
equivalence classes. If r is nondeterministic, then each transition is of the
form r

a−→ δ(r′) and for each i ∈ I, δ([ti]) = μr,a([ti]) = 1 only if r′ ∈ [ti].
By hypothesis, there exists an equivalence class [tk] such that μ([tk]) = 1.
This also implies that all the target Dirac distributions δ(r′) reached from r
are related, since by hypothesis, each r′ must belong to [tk]. Thus, for each
transition r a−→ δ(r′), μ ∼ δ(r′).

Now we can prove the completeness of LA using the result of the previous lemma.

Theorem 4. Given the logic LA, for each pair of states s, r of an alternating
automaton, s ∼ r iff F(s) = F(r).

Proof. (=⇒). Soundness follows by Theorem 1, by the fact that alternating au-
tomata are a special case of probabilistic automata via embedding [15] and since
LA is a sublogic of LN .

(⇐=). Let s �
 r, and let {〈ti〉}I be an enumeration of the equivalence classes
of �
. We show that �
 is a bisimulation between s and r that is, by Lemma 5,
for each action a and for each i ∈ I, μs,a(〈ti〉) = μr,a(〈ti〉). By hypothesis and
by Lemma 1, for each pair of classes 〈ti〉, 〈tj〉, there exists a formula ϕij such
that ti |= ϕij and tj �|= ϕij . For each i ∈ I, let ϕi =

∧
I�{i} ϕij . Then, ϕi

is satisfied only by the states of 〈ti〉. For the sake of contradiction, suppose
that there exists an action a and a class 〈tk〉 such that μs,a(〈tk〉) �= μr,a(〈tk〉).
For each i ∈ I, let μ(〈ti〉) = μs,a(〈ti〉) and μ′(〈ti〉) = μs,a(〈ti〉). Without loss
of generality, let μ′(〈tk〉) < μ(〈tk〉) Then, there exists a rational p such that
μ′(〈tk〉) < p < μ(〈tk〉). By definition, s |= ♦paϕk. By hypothesis, r |= ♦paϕk
as well. This means that there exists a measure μ′′ such that r a−→ μ′′ and
μ′′([[ϕk]]) ≥ p. By hypothesis, [[ϕk]] = 〈tk〉, and by definition, μ′′(〈tk〉) ≤ μ′(〈tk〉),
a contradiction.
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6.2 Hennessy-Milner Logic for Weak Probabilistic Bisimulation

The additivity of the maximal probabilities reachable via weak transitions is
assured if we restrict to compact systems. The notion of compactness (see Sec-
tion 2) can be applied to the alternating models introducing an adequate metric
d on measures and defining an alternating automaton to be compact if for each
state s the set of all measures reachable from s via weak transitions is compact
under the given metric [5]. Thus, each sequence of weak transitions leaving s
converge to a limit measure and a transition reaching that measure exists and
starts from s. This implies that for each maximal probability reachable, there is
a weak transition yielding that maximal probability.

In the following, we will implicitly assume that the alternating models consid-
ered are compact, thus allowing us to handle maximal probabilities in our proofs.
However, our logical characterization holds also for non-compact systems, since
alternating automata are a special case of probabilistic automata [15].

The logic characterizing weak probabilistic bisimulation for labeled concurrent
Markov chains [5] is reported in the following:

LAw ::= � | ¬ϕ |
∧

I

ϕi | ♦·wp aϕ.

In [5], disjunction is also used since it simplifies their proof of completeness, but
it is not necessary. This logic is exactly that of Larsen and Skou, except for the
diamond operator, whose semantics ♦·wp is defined as follows:

– s |= ♦·wp aϕ iff μs,a([[ϕ]]) ≥ p.

This definition underlines the strict correlation between weak probabilistic bisim-
ulation for alternating models and maximal probabilities. Philippou et al. [11]
restrict their study to deterministic schedulers, while Desharnais et al. [5] permit
linear combination of deterministically scheduled paths to reach maximal proba-
bilities. These linear combinations reflect the concept of convex combinations for
probabilistic automata. Anyway, as stated in Lemma 6, deterministic schedulers
are enough to reach maximal probabilities, allowing us to simplify some proofs
using deterministic schedulers instead of randomized ones.

Keeping the same notation of the previous section, for each action a and
for each formula ϕ, μs,a([[ϕ]]) is defined as the maximal probability (over all
schedulers) of [[ϕ]] over all the distributions reached via weak combined transitions
from s with label a. Like for strong bisimulation, for each action a and for each
formula ϕ, we can state that ♦·wp aϕ ≡ ♦·wa[ϕ]p. In the following, we prove the
completeness of the logic LAw, extending some results of [5] to our definition of
alternating model.

We define a new relation .= such that, for each pair of states s, r of an alter-
nating automaton, s .= r iff

– s and r are nondeterministic and for each action a and for each .=-closed set
E, μs,a(E) = μr,a(E), or
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– s is probabilistic with action τ and for each .=-closed set E such that s �∈ E,
μs,τ (E) = μr,τ (E), or

– s is probabilistic with external action and for each .=-closed set E, μs,a(E) =
μr,a(E).

The following lemma states a property of deterministic schedulers [2], and per-
mits to use indifferently deterministic or randomized schedulers when calcu-
lating maximal probabilities. The assumption is to work in compact systems,
since this result requires that each set considered must be reachable by a weak
transition.

Lemma 6. In compact systems, maximal probabilities can be reached with
deterministic schedulers.

The next lemma shows that the relation �
 implies the relation .=, which directly
talks about the maximal probabilities reachable. This result is basilar to prove
the soundness of the logic LNw .

Lemma 7. For each pair of states s, r of an alternating automaton, if s �
 r
then s

.= r.

Proof. Let s �
 r, and let {〈ti〉}I be an enumeration of the equivalence classes of
�
. We prove a stronger result, showing that for each action a and for each equiva-
lence class 〈tk〉, μs,a(〈tk〉) = μr,a(〈tk〉), which directly implies that s .= r. By hy-
pothesis and by Lemma 1, for each pair of classes 〈ti〉, 〈tj〉, there exists a formula
ϕij such that ti |= ϕij and tj �|= ϕij . For each i ∈ I, let ϕi =

∧
I�{i} ϕij . Then, ϕi

is satisfied only by the states of 〈ti〉. For the sake of contradiction, suppose that
there exists an action a and a class 〈tk〉 such that μs,a(〈tk〉) �= μr,a(〈tk〉). Without
loss of generality, let μs,a(〈tk〉) < μr,a(〈tk〉). Then, there exists a rational p such
that μs,a(〈tk〉) < p < μr,a(〈tk〉). By definition, r |= ♦·wp aϕk since μr,a([[ϕk]]) ≥ p.
By hypothesis, s |= ♦·wp aϕk, that is, μs,a([[ϕk]]) ≥ p. Then, μs,a(〈tk〉) ≥ p, a
contradiction.

Theorem 5 extends a result by [5] to alternating automata. This theorem is nec-
essary to prove the completeness of the logic for weak probabilistic bisimulation
in Theorem 6.

Theorem 5. The relation .= is a weak probabilistic bisimulation.

Proof outline. The proof follows the lines of Theorem 2 of [5], considering also
the possibility for probabilistic states to enable transitions labeled by external
actions

Theorem 6. Given the logic LAw, for each pair of states s, r of an alternating
automaton, s ≈p r iff F(s) = F(r).
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Table 1. Hennessy-Milner logics for discrete probabilistic systems

Model Logic Syntax Bisimulation

Non-Alternating LN � | ¬ϕ | ∧Iϕi | ♦aϕ | [ϕ]p ∼
LN

p � | ¬ϕ | ∧Iϕi | ♦· aϕ | [ϕ]p ∼p

LN
w � | ¬ϕ | ∧Iϕi | ♦·waϕ | [ϕ]p ≈p

Alternating LA � | ¬ϕ | ∧Iϕi | ♦paϕ ∼
LA

w � | ¬ϕ | ∧Iϕi | ♦·wp aϕ ≈p

Reactive LR � | ϕ1 ∧ ϕ2 | ♦paϕ ∼

Proof outline. Soundness follows by Theorem 1, by the fact that alternating
automata are a special case of probabilistic automata via embedding [15] and
since LAw is a sublogic of LN . Completeness follows by Theorem 5 and Lemma 7.

7 Concluding Remarks

We have studied logical characterizations, in terms of Hennessy-Milner style log-
ics, of strong, strong probabilistic and weak probabilistic bisimulations for proba-
bilistic automata [12]. Our three logics are defined on measures over states rather
than on single states, and add a new operator [ϕ]p to the classical Hennessy-
Milner logic, that measures the probability of the set of states that satisfy a
formula. Compared to other existing logics for reactive and alternating systems
[10,5], our logics keep the ♦ operator of Hennessy-Milner rather than replacing it
with ♦p, at the cost of adding a more powerful operator to measure probabilities
and to handle coexistent probability and nondeterminism.

We have then studied restrictions on probabilistic automata that embed the
alternating models and at the same time can be characterized by the logics of [5].
These restrictions impose that each state that enables a probabilistic transition
enables only one transition, which is the key property to keep alternative char-
acterizations of bisimulation relations in terms of maximal probabilities [11,5].
This result is important because it explains what are the key features of the
alternating models that make them more tractable from the algorithmic point
of view. Recall indeed that weak bisimulations are decidable in polynomial time
in the alternating models [11] due to their alternative characterization in terms
of maximal probabilities, while they are decidable in exponential time for prob-
abilistic automata [2].

Our long term goal is to extend all the theory of probabilistic automata to non-
discrete probability measures. The logical characterizations studied in this paper
will provide us important guidelines for the definitions to propose in this more
general setting.
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Semantic Barbs and Biorthogonality
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Abstract. We use the framework of biorthogonality to introduce a novel
semantic definition of the concept of barb (basic observable) for process
calculi. We develop a uniform basic theory of barbs and demonstrate
its robustness by showing that it gives rise to the correct observables
in specific process calculi which model synchronous, asynchronous and
broadcast communication regimes.

1 Introduction

Labelled transition systems and structural operational semantics [17] have been
the idiomatic approach to the semantics of communicating concurrent systems
for many years [13,9]. Such semantics naturally yield many notions of equivalence
based on traces or bisimulations. As communication patterns in these calculi
grew more complex, there was a need to justify the ad-hoc labelled transition
semantics being provided with respect to simpler, more canonical equivalences.

Following the seminal contribution of Berry and Boudol [3], calculi began to
be equipped with a reduction relation meaning that widely accepted techniques
from the theory of lambda-calculi, such as the definition of a contextually de-
fined reduction congruence, were able to be studied in the setting of calculi for
concurrency and mobility. However, even in the setting of CCS [13], reduction
congruence is coarser than standard bisimilarity; this led Milner and Sangiorgi
to introduce the concept of a basic observable of a process, which came to be
dubbed a barb [14]. Together with a reduction semantics, barbs yield a canonical
notion of process equivalence for most modern calculi.

Barbs are notable in that they are perhaps the most well-known concept of
formal concurrent semantics which, despite being frequently used, do not actu-
ally have a general formal definition. In [14], a barb is understood simply to be a
predicate on processes which captures the intuitive notion of basic observable. In
many other settings specific barbs are precisely defined but no account is taken
of whether these definitions are appropriate. For example, in the calculus, CCS,
the choice of barb as being the ability to synchronise on a given name is un-
contentious. However, even moving to such a simple setting as an asynchronous
version of CCS leads to questions about the suitability of certain synchronisa-
tions as barbs. In this setting, it is accepted [2] for instance that the ability to
synchronise as a receive action is not suitable as a barb. To date though, there
is no formal definition which justifies this.
� Research partially supported by EPSRC grant EP/D066565/1.
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The goal of this paper is to provide an abstract, semantic definition of what
it means to be a barb. We aim to make the definition as general as possible,
whilst ensuring that we encompass the intuitive definitions of barbs in various
well-known examples. The benefits of this approach will be that in complex lan-
guages or formal systems of communication, we will have a canonical definition
with which to identify the basic patterns of interaction. The need for more thor-
ough foundational insights is becoming increasingly important with the advent
of complex communication patterns in calculi for mobility [5, 19] and biological
modelling [4].

A defining feature of our approach is that we obtain a notion of observable
for our calculi based solely on their reduction semantics. Moreover, the observ-
ables are required to be suitably minimal so as to allow them to be considered
basic. In this sense, our work is related to Leifer and Milner’s attempts to ob-
tain a labelled semantics from a reduction semantics [11], however we focus on
static capability for interaction between agents and imbue the framework with
a notion of ‘successful’ interaction which is key to understanding the nature of
observability.

Our definition of barb is based around the notion of a closure operator, which,
given a process (or a set of processes), will construct the set of all processes
which offer the immediate interactions of that process (or set of processes). For
example, if we take the process: a!p0 ‖ b?q0, (where a! and b? denote, respectively,
the ability to output on a channel a and the ability to receive on a channel b)
then its closure is the set of all processes of the form

a!p ‖ b?q ‖ r for any p, q, r

as these are the processes which offer both an a! and b? interaction. This closed
set is considered to represent the abstract concept of a a! and b? interaction.
Similarly, the closure of {a!p0, b?q0} is the set of all processes of the form

a!p ‖ r or b?q ‖ r

that is, all processes which offer an a! or a b? interaction. Similar ideas have been
used both in logic and computer science, for example in Girard’s phase semantics
of linear logic [8], Krivine’s realisability [6], Pitts’ ��-closure [16] and formal
concept theory [20]. In particular, we shall show how all of the aforementioned
examples fit within a basic general framework.

To achieve a decent account of minimality in the barbs we need to consider
the closed sets that represent the least possible interactions. In the examples
above, we should not consider either of these minimal as they are made up
of combinations of distinct interaction capabilities in CCS. To capture this we
make use of the notion of irreducibility from algebraic geometry, see [18] for an
introductory account. Indeed, we only consider those closed sets of processes
which cannot be decomposed into a combination of two separate smaller closed
sets. This certainly rules out the closure of {a!p0, b?q0} from being a barb, but
we also wish to rule out the closure of a!p0 ‖ b?q0. This is done in a similar,
and dual, way of considering the closed sets of contexts which this process can
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successfully interact with and demanding that this closed set of contexts cannot
be decomposed either. In this example, the contexts which successfully interact
are of the form

a?p ‖ r or b!q ‖ r

and we see that these are not minimal in the sense suggested.
This use of irreducibility in both the closed sets of processes and the contexts

for them is, to our knowledge, novel and is a main contribution of the paper.
The remainder of the paper is arranged so that we present our general notion
of interaction frameworks and biorthogonality along with familiar examples of
such frameworks. We then tailor the setting to specifically allow us to study
interaction in processes and we introduce three paradigmatic example process
calculi. The definition of irreducibility and the main definition of barb is then
given. After this we study properties of barbs in example languages, including
full process languages such as π-calculus.

2 Biorthogonality

The notion of biorthogonality is the device underpinning our entire approach. It
is at the same time a conceptual and a technical tool; its strength resides in the
simplicity and elegance with which it captures mathematically –amongst other
things– the notion of test as relationship between processes and contexts. We will
use it to understand the concept and the role of ‘observation’ at a foundational
level. We shall omit the proofs in this section because all of the results are basic
and well-known, even if we are unaware of previous work which collected all
of the examples listed at the conclusion of this section as instances of a single
framework.

We assume the following basic ingredients:

– sets T, Γ and Π which we shall self-evidently refer to as terms, contexts and
processes, respectively;

– a function @: T×Γ→ Π, representing the insertion of a term in a context
to yield a process;

– a subset ⊥ ⊆ Π of successful processes, which we think of as a unary
predicate.

Informally, it is we think of t@ γ ∈ ⊥ as stating that t passes the test (represented
by context) γ, and vice versa; we shall say that t is successful for γ and that
γ is successful for t. We shall usually write the shorthand form t ⊥ γ to mean
t@ γ ∈⊥. From these basic notions we derive the maps:

(−)⊥ : P(T)→ P(Γ)
T �→ { γ ∈ Γ : ∀t ∈ T. t ⊥ γ }

and
(−)⊥ : P(Γ)→ P(T)
Γ �→ { t ∈ T : ∀γ ∈ Γ. t ⊥ γ }.

Thus, given a set T of terms, T⊥ is the set of contexts which are successful
for every t ∈ T , and similarly, given a set Γ of contexts, Γ⊥ is the set of terms
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which are successful for every γ ∈ Γ . The reader is asked to tolerate the abuse
of notation, justified by the symmetry of the definitions, as the type of the
argument to (−)⊥ will always be made clear.

The following lemma proves some basic properties of the functions, and
strengthens the intuition of their combination (−)⊥⊥ as a closure operation.

Lemma 1

(i) T ⊆ U implies U⊥ ⊆ T⊥;
(ii) T ⊆ T⊥⊥;

(iii) T⊥ = T⊥⊥⊥ (and therefore (T⊥⊥)⊥⊥ = T⊥⊥).

This allows us to define the central notion of a biorthogonal set of terms. Due
to the symmetry in the definitions, one can also define a biorthogonal set of
contexts, we leave this fact implicit. The lemma which follows the definition
illustrates some intuitively equivalent formulations of biorthogonality.

Definition 2 (Biorthogonals). We shall call a subset T ′ of T a biorthogonal
if there exists T ⊆ T such that T ′ = T⊥⊥.

Lemma 3. The following are equivalent:

(i) T is a biorthogonal;
(ii) T = T⊥⊥;

(iii) there exists Γ ⊆ Γ such that T = Γ⊥.

The basic algebraic properties of biorthogonals are expressed by the following
two lemmas.

Lemma 4. T⊥⊥ is the smallest biorthogonal containing T , for all T ⊆ T.

Lemma 5. Biorthogonals are closed under arbitrary intersections. 1

Two sets of terms T and U are said to be logically congruent when T⊥ = U⊥.
Logical congruence is an equivalence relation. The remainder of this section is
devoted to illustrating several examples of the basic framework.

Example 6 (Girard’s phase semantics for linear logic [8]). Let 〈P, ·, 1〉 be a com-
mutative monoid with identity; let T = Γ = Π be P and @ be the action ‘·’.
Let ⊥ ⊆ P . Then P is a phase space and the biorthogonals are its facts.

Example 7 (Krivine’s realizability). For simplicity, let T be the set of terms of
the simply-typed lambda calculus, and Γ a set of stacks, see [6] for details.
Then let Π be the set of syntactic expressions 〈t | γ〉, for t ∈ T and γ ∈ Γ.
The expected reduction semantics reduction semantics on is defined on Π and
⊥ ⊆ Π is taken be left-closed with respect to it:

〈t | γ〉 ∈ ⊥ and 〈t′ | γ′〉 →∗ 〈t | γ〉 implies 〈t′ | γ′〉 ∈ ⊥.

Under the obvious interpretation of | as @, the biorthogonals are called truth
values. See also [12] for a recent application of this technique.
1 Biorthogonals are not in general closed under even finite unions, as we shall illustrate

in Example 19.
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Example 8 (��-closed relations). We’ll use Abadi’s ‘semantic’ interpretation [1]
of Pitts’ ��-closed relations [16]. Let A,B be cpos with bottom ⊥. Let 2 be
the poset {{⊥,�}, {⊥ � �}}, and let 2A (resp. 2B) denote the set of monotonic,
strict and continuous functions A → 2 (resp. B → 2). Let T = A × B, Γ =
2A × 2B, and Π = 2 × 2, and define @ : (A × B) × (2A × 2B) → 2 × 2 to be
the obvious evaluation function @((a, b), (f, g)) = (fa, gb). Let ⊥ be the equality
relation on 2. The biorthogonals are the ��-closed relations.

Example 9 (Formal concept theory). Introduced by Wille [20], this subject shares
our notion of frameworks for biorthogonality and was proposed as a way of
restructuring lattice theory to account for the interaction between what was
called objects and attributes. The notion of ‘concept’ corresponds to our no-
tion of biorthogonal. The goal of this research effort seems to be one of useful
representations of lattices and efficient computations on these.

Example 10 (Classical algebraic geometry). Let T be an n-dimensional affine
space over an algebraically closed field k (say kn). Let Γ be the ring k[x1, . . . , xn]
of polynomials with n variables. Let Π be the field k, and @ : kn×k[x1, . . . , xn]→
k be the evaluation map. Let ⊥ = {0}. Then the biorthogonals are the affine
varieties. Varieties which are irreducible, that is, cannot be written as a nontrivial
union of two other varieties, are of particular interest. We shall make use of
irreducibility in §5.

3 A Refined Model: ⊥ as an Ideal

In preparation for applications of biorthogonality to sets of terms with richer
structure, we now refine our framework with a specialised notion of composition.
Recall that for 〈M, ·, 1〉 a commutative monoid, an ideal I is a subset of M closed
under the action of M , i.e., ∀i ∈ I ∀m ∈ M. i ·m ∈ I. We shall write [M ′] to
mean the ideal generated by a set M ′ ⊆ M . We shall now extend the basic
framework as follows:

– T ⊆ Π and Γ ⊆ Π;
– there exists a binary operator ‖ and ε ∈ Π such that 〈Π, ‖, ε〉 is a commuta-

tive monoid, and for all t ∈ T and γ ∈ Γ we define t@ γ = t ‖ γ; moreover,
T and Γ are submonoids, ie ε ∈ T, ε ∈ Γ and for all t, t′ ∈ T, t ‖ t′ ∈ T and
for all γ, γ′ ∈ Γ, γ ‖ γ′ ∈ Γ;

– ⊥ is an ideal of 〈Π, ‖, ε〉.

Example 11 (Phase semantics for affine linear logic). With reference to Exam-
ple 6, observe that collapsing T = Γ = Π and additionally requiring ⊥ to be an
ideal, we obtain phase semantics for affine linear logic; that is, the logic obtained
from linear logic by introducing weakening.

The following lemma lists some basic properties of the refined framework. Let
⊥Γ=⊥ ∩Γ and ⊥T=⊥ ∩T.
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Lemma 12

(i) For every T ⊆ T, we have ⊥Γ ⊆ T⊥;
(ii) for every Γ ⊆ Γ, we have ⊥T ⊆ Γ⊥;

(iii) every biorthogonal V ⊆ T is an ideal of T;
(iv) every biorthogonal Γ ⊆ Γ is an ideal of Γ.

Proof. (i) Obvious, since ⊥ is an ideal of Π, for any π ∈ ⊥Γ and t ∈ T we have
π ‖ t ∈ ⊥, so π ∈ T⊥. (ii) Is immediate by duality. (iii) For arbitrary t ∈ T,
v ∈ V , γ ∈ V ⊥, we have that t ‖ v ‖ γ ∈ ⊥ since v ‖ γ ∈ ⊥. (iv) Is immediate
by duality. ��

4 Idealised Process Calculi

Idealised process calculi, introduced here, will be the main examples of the ex-
tended framework defined in the previous section. Although the calculi we con-
sider do not cover the entire realm of process models systematically, they are
carefully chosen to span a significant spectrum of cases. In particular, our ide-
alised process calculi have only two constructs, action prefix and parallel com-
position. They are equipped with different reduction semantics which specifies
the communication regime used.

The set of ‘ordinary’ processes P can be generated freely by a simple grammar,
given in Fig 1 for some fixed countably infinite set of channel names A. Basic
actions a? and a! represent action/co-action synchronisation pairs à la CCS.
We consider the set of processes to be quotiented by structural congruence ≡
which makes 〈P, ‖, ε〉 a commutative monoid. More concretely, ≡ is the smallest
congruence which includes the equations:

P ‖ Q ≡ Q ‖ P and P ‖ ε ≡ P.

Ordinary processes will form the set T of terms.
The set of contexts, denoted C, is obtained in a similar way. A typical context

is a finite parallel composition of �s prefixed by a single name. Here, the syntactic
entity � represents success. Our contexts have a simple structure because we
shall always be interested in the top level structure of a term; indeed, we shall
test only for a process’s immediate capabilities for interaction. Finally, P� is the
set of extended processes. An extended process is a finite parallel composition
of ordinary processes, contexts and �s. As done for P , we also quotient C and
P� by the structural congruence ≡.

In order to simplify notation, we shall often denote action prefixing with mere
juxtaposition and also write simply a! or a? to mean a!ε or a?ε, respectively.

Different communication regimes are specified with individual sets of reduc-
tion schemas over extended processes. The reduction semantics is obtained by
closing the reduction rules with respect to ‖ in the sense that if t → t′ then
t ‖ σ → t′ ‖ σ for any σ ∈ P�.

In the asynchronous case, instead of following the tradition of allowing an
output to prefix only the null process, we simply only include the reductions
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P ::= ε | P ‖ P | M.P

M ::= a? | a! (a ∈ A)

C ::= ε | C ‖ C | M�

M� ::= M�
P� ::= P� ‖ P� | P | C | �

Fig. 1. Idealised process calculi: processes P and contexts C

where this is the case. Thus in the asynchronous calculus a term of the form
a!.P where P �= ε is operationally indistinguishable from ε as it cannot take
active part in any reduction.

Example 13 (Synchrony). The reduction rules are given by the schema below
where P and Q range over arbitrary extended processes.

a!P ‖ a?Q → P ‖ Q (a ∈ A)

Example 14 (Asynchrony). The reduction rules are given by the schema below
where P ranges over arbitrary extended processes.

a! ‖ a?P → P (a ∈ A)

Example 15 (Broadcast). The reduction rules are given by the schema below; I
is any finite (possibly empty) set while P and Qi range over extended processes.

a!P ‖
∏

i∈I
a?Qi → P ‖

∏

i∈I
Qi

In each of the cases, the three simple calculi described above fit within our refined
framework: we let T = P , Γ = C and Π be parallel compositions of these. We
define application to be parallel composition:

@ : P × C → Π

(t, γ) �→ t ‖ γ.

In order to define the success predicate we make use of the extended processes
P�. We call an extended process (a member of P�) ‘spent ’ if has precisely one
� at top level - ie � is a parallel component. An extended process is deemed to
be successful if it reduces in one step to a spent extended process. In formulae:

π ∈ ⊥ iff ∃π′ ∈ P�. π′ spent ∧ π → π′.

As usual, we write p ⊥ π when p@π = p ‖ π is a successful extended pro-
cess. Essentially, the definition of success ensures that a context has to either
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engage the term (since a context which would reduce by itself via a non-trivial
interaction, using any of our three reduction schemas, would result in two in-
stances of �) or have an atomic parallel component which reduces by itself to
� (for instance, the context a!� in the broadcast paradigm). It is clear that in
all three examples ⊥T= ∅. In Examples 13 and 14, also ⊥Γ= ∅. In Example 15
⊥Γ= [{ a!� : a ∈ A }], since any a!� can reduce to � in one step.

We conclude this section by illustrating typical biorthogonals for the simple
calculi illustrated above. Recall that we use the square bracket notation to mean
the smallest ideal generated by the indicated set of terms.

Example 16 (Synchrony – cf Example 13). Biorthogonals for basic terms with
single communication capability are the set of all terms which have that im-
mediate capability. So we have {a!}⊥⊥ = ([a?�] ∪ ⊥)⊥ = [a!P ], the set of
all terms ready to output on a. Symmetrically, {a?}⊥⊥ = [a?P ]. In general,
starting with a single term, the biorthogonal yields all the terms that have
the same selection of immediate capabilities for communication. For instance
{a? ‖ b!c?}⊥⊥ = [a!�, b?�]⊥ = [a?P ‖ b!Q]. For sets of terms, the biorthogonal
is the smallest biorthogonal which contains all of the terms. In the case of Ex-
ample 13 this is simply the union of the biorthogonals of the individual terms.
However as hinted at previously and illustrated by the calculus of Example 19,
this need not be so, as the union of biorthogonals is in general not a biorthogonal.

Example 17 (Asynchrony – cf Example 14). We have again {a!}⊥⊥ = [a?�]⊥ =
[a!P ]. However, since output actions a! cannot guard � in a reduction, we have
{a?}⊥ = ⊥Γ and therefore {a?}⊥⊥ = T.

Example 18 (Broadcast – cf Example 15). Since ⊥Γ = [{ a!� : a ∈ A }], we have
{a?}⊥⊥ = ⊥⊥Γ = T. Once again, {a!}⊥⊥ = [a!P ].

5 Irreducibility and Barbs

As indicated previously, irreducibility is an important concept of algebraic ge-
ometry. Here we shall apply the concept to biorthogonals, which in general are
not closed under finite unions:

Example 19. Consider the following reduction rules which capture an interaction
pattern reminiscent of the features of the join calculus [7]:

a?P ‖ a!P ′ → P ‖ P ′ (a ∈ A)
ab?P ‖ a!P ′ ‖ b!P ′′ → P ‖ P ′ ‖ P ′′ (a, b ∈ A)

Here the ab? prefix needs the presence of both a! and b! to reduce. Then
{a?�}⊥⊥ = [a!P ]⊥ = [a?�] and similarly {b?�}⊥⊥ = [b!P ]⊥ = [b?�]. However,
{a?�, b?�}⊥⊥ = [a!P ‖ b!Q]⊥ = [a?�, b?�, ab?�] is strictly larger than [a?�]∪
[b?�]. Thus we see that the union of the two biorthogonals [a?�] and [b?�] is
not itself a biorthogonal.
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Definition 20 (Sum). Given biorthogonals V1 and V2, their sum V1 + V2 is
defined to be the smallest biorthogonal which contains both V1 and V2.

It is easy to verify that V1 +V2 = (V1 ∪ V2)⊥⊥ = (V ⊥1 ∩ V ⊥2 )⊥. Thus, intuitively,
V1 + V2 consists of all the terms which pass the test suites of each of V1 and V2.
Sum + is clearly commutative and easily checked to be associative. It has ∅

⊥⊥

as the identity. Furthermore, the binary operations + and ∩ on biorthogonals
are related by De Morgan equations: V ∩ W = (V ⊥ + W⊥)⊥ and V + W =
(V ⊥ ∩W⊥)⊥.

A sum V = V1 + V2 is said to be nontrivial when V �= V1 and V �= V2.

Definition 21 (Irreducibility). A biorthogonal is said to be irreducible if it
cannot be written as a nontrivial sum of two biorthogonals.

The following definition is one of the central contributions of this paper.

Definition 22 (Barb). A barb is defined to be an proper irreducible biorthog-
onal B, whose orthogonal B⊥ is also proper irreducible. For T ⊆ T any set of
terms, T is said to barb on B, written T ↓B, if T⊥⊥ ⊆ B. In particular, a single
term t barbs on B when {t}⊥⊥ ⊆ B. A term t ∈ T is said to weakly barb on B,
written t⇓B, if there exists t′ such that t→∗ t′ and t′ ↓B.

The definition identifies barbs abstractly as ‘replete’ or ‘maximal’ sets of terms
that exhibit a given basic behaviour in tests (biorthogonality). Such behaviour
must be nontrivial (properness), and ‘atomic’ (irreducibility). The irreducibility
condition onB⊥ means that barbs are testable by suitably atomic set of contexts.

Definition 22 allows the immediate possibility of defining the standard notions
of (strong and weak) barbed bisimilarity and (strong and weak) barb congruence,
which provide canonical notions of equivalence. Note that there is a choice in how
one defines the congruence, one can either follow Milner and Sangiorgi’s original
definition [14] of the largest congruence contained in barbed bisimilarity, or to
take the largest congruence which is also a bisimulation. The latter equivalences
are sometimes described as dynamic, see [15, 10].

The definition of barb which we have formulated is widely applicable; how-
ever, in any given framework, it may take some effort to identify the irreducible
biorthogonals. For this reason we now seek to find a straightforward characteri-
sation of the barbs in our range of example calculi. For now, in order to do this
we have tailored the success predicate towards handshaking synchronisation and
we shall also make further restrictions on the type of calculi considered. These
restrictions, while intuitive and natural, disallow some more complex examples
of interaction (eg Example 19), which will be the subject of future work.

6 Simple Calculi

In this section we shall require additional structure on the algebra of biorthog-
onals. A calculus is said to be simple when its algebra of biorthogonals enjoys
the extra structure.



Semantic Barbs and Biorthogonality 311

Definition 23. A biorthogonal V is said to be finitely generated (fg) when there
exist v1, . . . , vn ∈ V such that V = {v1, . . . , vn}⊥⊥.

In any framework, the sum of two fg biorthogonals is fg: if V = {v1, . . . , vk}⊥⊥
and W = {w1, . . . , wl}⊥⊥ then V +W = {v1, . . . , vk, w1, . . . , wl}⊥⊥.

Lemma 24. Any irreducible fg biorthogonal is generated by one of its elements.
Thus if V is fg and irreducible then there exists v ∈ V such that V = {v}⊥⊥.

Proof. Suppose that V is irreducible and fg. Then there exist v1, . . . , vn ∈ V
such that V = {v1, . . . , vn}⊥⊥. Indeed, clearly V = {v1}⊥⊥ + {v2, . . . , vn}⊥⊥.
By irreducibility, either V = {v1}⊥⊥ and we are finished or V = {v2, . . . , vn},
where we repeat the procedure. ��

In particular, if all biorthogonals are fg then all irreducible biorthogonals can be
generated by a single element. If biorthogonals are closed under binary union,
then the converse, that all single element generated biorthogonals are irreducible,
is also true.

Lemma 25. Suppose that biorthogonals are closed under finite union, in other
words V +W = V ∪W . Then any biorthogonal generated by a single element is
irreducible.

Proof. Suppose that V = {v}⊥⊥ = V1 + V2 = V1 ∪ V2. Then either v ∈ V1 or
v ∈ V2. In the first case V = {v}⊥⊥ ⊆ V1, meaning that V = V1; similarly, in
the second case V = V2. ��

We shall now show that the calculi of Examples 13, 14 and 15 have biorthogonals
which are closed under unions. We shall need two technical lemmas.

Lemma 26. The examples satisfy the following dual properties:

(i) for all contexts γ ∈ Γ and terms t1, t2 ∈ T:

t1 ‖ t2 ⊥ γ iff t1 ⊥ γ or t2 ⊥ γ;

(ii) for all terms t ∈ T and contexts γ1, γ2 ∈ Γ:

t ⊥ γ1 ‖ γ2 iff t ⊥ γ1 or t ⊥ γ2.

Proof. The ‘if’ direction is obvious for both cases.
Suppose that t1 ‖ t2 ⊥ γ. If γ reduces to a spent process with no need for

interaction then clearly both t1 ⊥ γ and t2 ⊥ γ. Otherwise, since all reduction
rules of Examples 13 and 14 have at most two parallel components in the redex,
and γ has to provide at least one (since both t1 or t2 are ordinary processes and
thus have no occurrences of �), it follows that t1 ⊥ γ or t2 ⊥ γ. In Example 15,
it is enough to consider γ of the form a?�. Clearly then either t1 or t2 must
have output capability on a, and thus t1 ⊥ γ or t2 ⊥ γ.

Now suppose that t ⊥ γ1 ‖ γ2. Notice that γ1 ‖ γ2 reduces to a spent process
without interaction if and only if either γ1 or γ2 (or both) can do so indepen-
dently. Indeed, any interaction between γ1 and γ2 results in two instances of �
result in the reactum. Hence t must provide a part of the redex. ��
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Proposition 27. The examples satisfy {t1 ‖ t2}⊥ = {t1}⊥ ∪ {t2}⊥, for any
terms t1 and t2. More generally, for T1 and T2 any sets of terms, (T1 ‖ T2)⊥ =
T⊥1 ∪ T⊥2 , where ‖ is extended to sets in the obvious pointwise manner.

Proof. Clearly the more general second statement implies the first. Also, it is
obvious that A⊥ ∪ B⊥ ⊆ (A ‖ B)⊥. Now suppose that π ∈ (A ‖ B)⊥. If, for
all a ∈ A, π ⊥ a, then π ∈ A⊥ and we are finished. Suppose then that there
exists a ∈ A such that not π ⊥ a. Then, by the assumption on π, for all b ∈ B,
π ⊥ a ‖ b. Lemma 26 implies that π ⊥ b. Thus π ∈ B⊥. ��

The examples satisfy {γ1 ‖ γ2}⊥ = {γ1}⊥ ∪ {γ2}⊥, for all contexts γ1 and γ2.
More generally, (Γ1 ‖ Γ2)⊥ = Γ⊥1 ∪ Γ⊥2 for all sets of contexts Γ1 and Γ2.

Corollary 28. In the examples, biorthogonals are closed under finite unions.

Definition 29 (Simple calculi). We shall say that an idealised process calcu-
lus is simple when:

(i) V +W = V ∪W , for all biorthogonals V and W ;
(ii) every irreducible biorthogonal has a single generating element.

Proposition 30. The calculi introduced in Examples 13, 14 and 15 are simple.

Proof. Corollary 28 shows that the calculi satisfy (i). If V is a finitely generated
irreducible biorthogonal, then it is generated by a single element as shown in
Lemma 24. It remains to show that any irreducible biorthogonal is finitely gen-
erated, the proof of this fact is more involved and will appear in a fuller version
of this paper. ��

Proposition 31. In a simple idealised process calculus, the barbs coincide with
proper biorthogonals generated by a single term whose orthogonal is also proper
and generated by a single term.

Proof. By definition, barbs are proper irreducible biorthogonalsB whose orthog-
onal B⊥ is also proper irreducible. We know that, by simplicity, any irreducible
biorthogonal has a single generating element. On the other hand, any biorthogo-
nal which is generated by a single term is irreducible by Lemma 25, thus if both
the biorthogonal and its orthogonal are proper and generated by a single term
then they are both irreducible, and the biorthogonal is a barb.

Remark 32. Several interesting and reasonable features of calculi fall outside
the framework of simple calculi. For instance, the ability of synchronising with
two separate processes as illustrated in Example 19, can mean that biorthog-
onals are not closed under binary unions. The requirement of irreducibility in
the definition of ‘simple’ above is necessary even for the simplest calculi. An
example below, written in the synchronous idealised language of Example 13,
demonstrates a non finitely generated reducible biorthogonal. This example is
useful because it shows that, in a finitary calculus, it is irreducibility that forces
finite generation for barbs. We also provide an example of a calculus which con-
tains non finitely generated irreducible biorthogonals. In this case, the calculus
contains non-finitary reduction rules.
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Example 33 (Non finitely generated reducible biorthogonal). We use the idealised
synchronous language of Example 13 and let T = { ti : i ≥ 0 }; it holds that T⊥

is { [πi] : i ≥ 0 }, where we define each ti and πi as below:

ti =
∏

j<i

bj ! ‖ ai! πi = bi?� ‖
∏

j≤i
aj?�.

Consequently T⊥⊥ = { [ti] : i ≥ 0 }. We claim that T⊥⊥ is not finitely generated
but is reducible as we can express T⊥⊥ as T⊥⊥ = {t0}⊥⊥+{ ti : i ≥ 1 }⊥⊥ with
{t0}⊥⊥ �= { ti : i ≥ 1 }⊥⊥.

Example 34 (Non finitely generated irreducible biorthogonals). Suppose that the
set of prefixes is

M ::= ai? | bi! | bω (i ∈ N)

and that there is an infinite reaction rule schema of the form:

ai?P ‖ bj !Q→ P ‖ Q (i ≤ j ∨ j = ω).

For each i, {ai?}⊥⊥ = { bj!� : i ≤ j ∨ j = ω }⊥ = [{ akP : P ∈ T, k ≤ i }]. In
particular, there is an infinite ascending chain

{a0}⊥⊥ ⊂ {a1}⊥⊥ ⊂ . . .

Now the biorthogonal {bω}⊥ = { ai : i ∈ N }⊥⊥ is irreducible and not finitely
generated.

We are now in a position to show the barbs for each of our three main exam-
ples. Before we do this, it is helpful to consider why certain biorthogonal are not
barbs. Firstly, any non irreducible biorthogonal is not a barb, for instance, in the
synchronous case {a?}⊥⊥ ∪ {b?}⊥⊥. Intuitively, this is so because the biorthog-
onal does not capture a single set of capabilities for interaction, its terms have
either one type (a?) or the other (b?). An irreducible biorthogonal may also fail
to be a barb because its orthogonal is reducible, meaning that no suitable single
test exists for it – for instance, {a! ‖ b!}⊥ = {a?}⊥⊥ ∪ {b?}⊥⊥. Intuitively, this
is because each of the terms in the biorthogonal has two distinct possibilities for
interaction, here both a? and b?. Finally, when a biorthogonal is not proper (it
contains all the terms), it is not a barb. In this case, the term does not have
non-trivial observations (cf {a?}⊥⊥ in the asynchronous case).

We know because of Propositions 30 and 31 that in identifying barbs in our
simple calculi it is sufficient to examine biorthogonals of singletons:

Proposition 35 (Synchronous barbs). In Example 13, the barbs are:

1. for any a ∈ A, the processes which can output on a: {a!}⊥⊥;
2. for any a ∈ A, the processes which can input on a: {a?}⊥⊥.
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Proof. Both {a!}⊥⊥ and {a?}⊥⊥ are proper biorthogonals with orthogonals
{a?�}⊥⊥ and {a!�}⊥⊥, respectively. Both are thus barbs by Proposition 31.

If the term has (immediate) capability to communicate on two separate chan-
nels then its orthogonal is reducible, hence it cannot be a barb. It thus suffices
to notice that {a! ‖ a!}⊥⊥ = {a!}⊥⊥ and {a? ‖ a?}⊥⊥ = {a?}⊥⊥. ��

Proposition 36 (Asynchronous barbs). For the calculus of Example 14, the
barbs are, for any a ∈ A, the processes which can output on a, {a!}⊥⊥.

Proof. As before, it suffices to check terms which have a communication capa-
bility on a single name. But {a!}⊥⊥ = {[a?�]}⊥ = [a!P ], a proper biorthogonal,
while {a?}⊥⊥ =⊥⊥= T. ��

Proposition 37 (Broadcast barbs). For the calculus of Example 15, the
barbs are, for any a ∈ A, the processes which can output on a, {a!}⊥⊥.

Proof. Again, {a!}⊥⊥ = {[a?�]}⊥ = [a!P ] while {a?}⊥⊥ = T. ��

7 Extension to Full Process Calculi

We have presented a general notion of barb which behaves well in our idealised
calculi; this does not, however, allow us to characterise barbs in full process
calculi. In this section we remedy this by observing that since the nature of barbs
in their various settings is closely tied to the basic pattern of interaction between
processes, and the idealised calculi are sufficient to model these interactions, then
barbs in full process calculi can be obtained via translation in to the idealised
languages. We shall show that, given well-behaved translations, the biorthogonals
of an extended framework derived from a full process calculus are preserved
through translation.

Let us assume a process calculus C with an inert process ε and parallel com-
position ‖. This calculus can be construed as a testing framework by augmenting
it with � in an identical way to the idealised calculi. We will use P and C to
range over terms and contexts of this framework.

Definition 38 (Translations). An interaction-preserving translation into the
idealised calculus I consists of a pair of maps

[[ ]] : C → I [[ ]]−1 : I → C

which preserve ε, ‖ and � and moreover satisfy:

– [[ ]] is surjective
– [[[[P ]]]]−1 is logically congruent to P .
– [[P ]]@π ∈⊥ iff P@[[π]]−1 ∈⊥ and, dually, [[p]]−1@C ∈⊥ iff p@[[C]] ∈⊥.

Lemma 39. For any interaction-preserving translation, [[ ]]−1 is surjective up
to logical congruence.
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Proposition 40 (Translation correctness). For any interaction-preserving
translation and any set of terms/contexts A of C, [[A⊥]] = [[A]]⊥.

This tells us that interaction-preserving translations preserve (irreducible)
biorthogonals, thus barbs are preserved. To find the barbs of a full process calcu-
lus then, it suffices to provide an interaction preserving translation and identify
the barbs in the idealised language. We give an example of such a translation
for the π-calculus below.

Example 41. We shall translate the π-calculus in to the synchronous idealised
calculus. We define the mapping [[ ]]−1 as a simple embedding which preserves,
ε,� and ‖ and

[[a?p]]−1 = a(n).ε [[a!p]]−1 = ān.ε

where n is a reserved fixed name and we include special cases of the translation
to preserve prefixed ticks. For the forward mapping, we also preserve ε,� and ‖:

[[ānP ]] = a!ε [[!P ]] = [[P ]]
[[a(n)P ]] = a?ε [[νnP ]] =

∏
mi �=n?,n!miε if [[P ]] =

∏
I miε

and also allow for special cases to preserve prefixed ticks. Note that, as we are in-
terested solely in initial reductions, the role of replication, dynamic scoping and
dynamically received names do not impact upon the translation. We leave it to the
reader to check that this does indeed form an interaction preserving translation.

8 Conclusions and Future Work

We have introduced a formal definition of the well-known notion of barb, a basic
observable of a process calculus. The definition relies only on the presence of a
suitable underlying reduction semantics and relies on biorthogonality, a simple
framework with deep roots in logic and computer science, and irreducibility, a
concept from algebraic geometry.

We have shown that our definition yields the commonly accepted observables
in idealised calculi for synchronous, asynchronous and broadcast communication.
The latter fact was made possible by a characterisation of barbs in a particular
class of simple calculi whose algebra of biorthogonals satisfies additional axioms.
We have also shown how to use our idealised calculi to compute the barbs for
standard calculi.

Finally, we have identified some synchronisation mechanisms which do not
fit within the framework of simple calculi, but which still fit into the general
framework. Our future research will concern understanding barbs in such calculi.
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Abstract. We investigate some aspects of proof methods for the termi-
nation of (extensions of) the second-order λ-calculus in presence of union
and existential types.

We prove that Girard’s reducibility candidates are stable by union
iff they are exactly the non-empty sets of terminating terms which are
downward-closed w.r.t. a weak observational preorder.

We show that this is the case for the Curry-style second-order λ-
calculus. As a corollary, we obtain that reducibility candidates are exactly
the Tait’s saturated sets that are stable by reduction. We then extend
the proof to a system with product, co-product and positive iso-recursive
types.

1 Introduction

Since their introduction in [17], union and existential types with type assignment
rules are present in many type systems. From a foundational perspective, they
are interesting as dual of respectively intersection and second-order types. The
paper [3] provides detailed investigations on syntactic as well as semantics issues
of union types. As a theoretical tool, they have been used in [8, 9] to prove
that a kind of Böhm trees, called Lévy-Longo trees, distinguishes pure λ-terms
exactly as does their observation in the lazy concurrent λ-calculus.

Interesting applications of union types are the XML processing languages
XDuce [14] and CDuce [11]. They describe types of XML documents by means
of regular expressions whose internal representation relies on union types.

Existentials and unions are also interesting tools for representing abstractions
of programs. In the context of strictness analysis, unions are used in [15] to
represent disjunctive properties of programs.

Frédéric Blanqui and the author proposed in [6] a termination criterion for
higher-order conditional rewriting that use constrained types. Existential con-
straints arise naturally, for example when proving that some implementations of
QuickSort preserves the size of its argument. This work relies on proof methods
for the termination of typed λ-calculus plus rewriting in presence of existential
types.
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Usual proofs of strong normalization (i.e. termination) for typed λ-calculi
assign to each type T a set of strongly normalizing terms �T �ρ (the interpretation
of T , with an assignment ρ of its free variables). Then, they use soundness of this
interpretation w.r.t. the type system: typable terms belong to the interpretation
of their types. But soundness requires that types are not interpreted by arbitrary
sets of terms. They must satisfy some closure conditions. The two most popular
ones are Girard’s reducibility candidates and Tait’s saturated sets. See [12] for a
detailed discussion and historical references. A comparison of Girard’s and Tait’s
closure conditions can also be found in [23].

In order to handle elimination rules of union and existential types, it is con-
venient to interpret these types by using unions of interpretations: �T1 ∪ T2�ρ =
�T1�ρ ∪ �T2�ρ and �∃X.T �ρ =

⋃
C∈Cl�T �ρ[C/X ] (Cl is the collection of closed

sets under consideration). This making requires stability by union of closed sets:
if C is a family of closed sets, then

⋃
C =def

⋃
C∈C C is closed. Approaches not

relying on stability by union are briefly discussed in Sec. 8.
It is well known (see e.g. [23]) that Tait’s saturated sets for β-reduction are

stable by union. However, their extension with additional computational rules
can by cumbersome. On the other hand, Girard’s reducibility candidates are
more adjustable, in particular for dealing with rewriting [5]. However, their sta-
bility by union is known to be problematic [23].

In this paper, we prove the stability by union of reducibility candidates for
the polymorphic λ-calculus λ2. To our knowledge, this property was hitherto
unknown, and even often believed to be false. We extend the proof to λ2U+,
the extension of λ2 with product, co-product and positive iso-recursive types (it
is shown in [21] that it is a proper extension of λ2).

The key observation is that reducibility candidates are stable by union iff
they are exactly the non-empty sets of strongly-normalizing terms which are
downward-closed w.r.t. a weak observational preorder (see [16] for a presenta-
tion and references on related topics). This is a very simple structure compared
to the one appearing in the definition of reducibility candidates, which is not
trivial and somehow mysterious. Hence, studying stability by union of reducibil-
ity candidates reveals important facts on their fundamental nature.

We show that the above condition is equivalent to say that some terms,
called neutral, have a maximal reduct w.r.t. to that preorder. For the case of
λ2 and λ2U+, we prove it by using a simple syntactic property called weak-
standardization. It relies on the orthogonality of λ2 and λ2U+: computational
rules are non-ambiguous and left-linear (no equality tests between open terms).
As a by-product, we obtain that Girard’s sets correspond exactly to the Tait’s
sets that are stable by reduction.

We present the syntax of λ2 in Sec. 2, and reducibility in Sec. 3. Our analysis
of stability by union of reducibility candidates is presented in Sec. 4. Finally, the
system λ2U+ is presented in Sec. 6, and stability by union of its reducibility
candidates in Sec. 7.

We assume familiarity with λ-calculus and types, and refer to [13, 4] for de-
tailed introductions.
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2 The Polymorphic λ-Calculus λ2

The core language of the paper is the Curry-style second-order λ-calculus λ2,
as presented in [4]. We recall the main notations below, and then discuss union
and existential types.

Let X be a countable set of variables and Λ be the set of untyped λ-terms:

t, u ∈ Λ ::= x ∈ X | λx.t | t u .

They are considered equals modulo α-conversion. Terms come with the usual
notion of β-reduction, namely (λx.t)u �→β t[u/x], where t[u/x] is the capture-
avoiding substitution of x by u in t. We let→ be the smallest rewrite relation on
Λ containing �→β . In the following, we refer to �→β as the top reduction and denote
by TNF the set of terms in �→β-normal form. We let (t)→ =def {u | t→ u} and
(t)∗→ =def {u | t →∗ u}, where →∗ is the reflexive-transitive closure of →. We
write (t1, . . . , tn)→ (t′1, . . . , t

′
n) iff there is i such that ti → t′i and tj = t′j for all

j �= i. A term t is strongly normalizing iff every reduction sequence issued from
t is finite. Let SN be the set of strongly-normalizing terms. Note that t ∈ SN
iff either t is not reducible or all its reducts are in SN . It follows that SN is the
smallest set such that for all t,

(∀u (t→ u ⇒ u ∈ SN )) ⇒ t ∈ SN .

Types are the formulas of second-order minimal logic, with variables in V :

T, U ∈ T ::= X ∈ V | T ⇒ U | ∀X.T .

We denote by X (t) (resp. V(T )) the set of free variables of t (resp. T ). An
environment Γ is a finite set of declarations x : A such that x �= y whenever
(x : A), (y : B) ∈ Γ . Typing judgments are sequents of the form Γ 
 t : A,
derived with the following rules:

(Ax)
Γ, x : T � x : T

(⇒ I)
Γ, x : U � t : T

Γ � λx.t : U ⇒ T
(⇒ E)

Γ � t : U ⇒ T Γ � u : U

Γ � tu : T

(∀ I)
Γ � t : T

Γ � t : ∀X.T (X /∈ V(Γ )) (∀E)
Γ � t : ∀X.T
Γ � t : T [U/X]

Existential and Union Types. Our main point is to prove the soundness
(w.r.t. some closure operator) of elimination rules of union and implicit existen-
tial types. Such types are manipulated with type-assignment rules, in the spirit
of [17, 3]. Typical rules for these systems are:

(∃ I)
Γ � t : T [U/X]

Γ � t : ∃X.T (∃E)
Γ � t : ∃X.T Γ, x : T � u : U

Γ � u[t/x] : U
(X /∈ V(Γ,U))

(∪I) Γ � t : Ti

Γ � t : T1 ∪ T2
(i ∈ {1, 2}) (∪E)

Γ � t : T1 ∪ T2 ∀i ∈ {1, 2}, Γ, x : Ti � u : U

Γ � u[t/x] : U
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It is worth noting that such types are not subject to the Curry-Howard proposi-
tions-as-types isomorphism, in the sense that proofs trees do not corresponds to
terms. It would require to reflect all types constructions at the term level, and
this leads to use explicit constructs for disjunction and existential quantification,
as discussed for e.g. in [13].

This is precisely what we want to avoid in [6], where existential quantifications
are used in a constrained type system. We want terms typed in this system to
be used in a constrained-free type system. Hence, constraints should not appear
at the term level, and we are thus interested in implicit existential types.

On the other-hand, it is clear that the impredicative codings of unions and ex-
istential quantification given in [13] do not define union and implicit existential
types. This motivates us to handle the soundness of rules (∪E) and (∃E) by tools
lying inside the reducibility framework. A first step is to study the behavior of
Girard’s reducibility candidates w.r.t. union. Since type quantifications of [6] are
not the usual ones, presented above, that operate on the type structure, we study
stability by union in a generic way, without committing to specific typing rules.

3 Reducibility

Because of its second order-type quantification, strong normalization proofs of
λ2 must use a third-order predicate. This is achieved by interpreting types T ∈ T
as sets of strongly normalizing terms �T �ρ ⊆ SN . Then strong normalization of
typable terms follows from the soundness of the interpretation:

If Γ 
 t : T and σ(x) ∈ �A�ρ for all (x : A) ∈ Γ , then σ(t) ∈ �T �ρ. (	)

As said in the introduction, (	) does not hold when types are interpreted by
arbitrary subsets of SN . In this section, we focus on a well-known collection of
suitable subsets of SN called Girard’s reducibility candidates.

Definition 3.1 (Neutral Terms). Terms not headed by an abstraction are
called neutral. Let N be the set of neutral terms.

Let HN , the set of hereditary neutral terms, be the smallest set such that for
all t ∈ N , (∀u (t→ u⇒ u ∈ HN ))⇒ t ∈ HN .

Note that HN ⊆ SN . Let elimination contexts be E[ ] ::= [ ] | E[ ]t. They
correspond to call-by-name evaluation contexts, dual to call-by-value evaluation
contexts of [10]. We borrowed from [1] their use in reducibility.

Remark 3.2. The general intuition behind neutral terms is linked to the duality
between introductions and eliminations in natural deduction. Since neutral terms
are not headed by introductions, they do not interact with elimination contexts:
if t ∈ N and E[t] → v then v = E′[t′] with (E[ ], t)→ (E′[ ], t′). It follows that
for t ∈ N , we have E[t] ∈ N and E[t] ∈ SN as soon as {E[u] | t→ u} ⊆ SN .

Definition 3.3 (Reducibility Candidates). The set of reducibility candi-
dates, denoted by CR, is the set of all C ⊆ SN such that
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(CR0) if t ∈ C and t→ u then u ∈ C,
(CR1) if t ∈ N and (∀u (t→ u ⇒ u ∈ C)) then t ∈ C.

The definition of SN directly implies that SN ∈ CR. Now, let us see why CR is
stable by intersection (C ⊆ CR ⇒

⋂
C ∈ CR). Recall that a closure operator on

a partial order (D,≤) is a function · : D → D which is idempotent: X = X ;
extensive: X ≤ X; and monotone: X ≤ Y ⇒ X ≤ Y . It is well-known that the
greatest lower bound of a family of closed elements is closed.

The shape of the clauses of CR is sufficient for the existence of a closure
operator · : P(SN ) → P(SN ) such that X is the least reducibility candidate
containing X . Indeed, clauses (CR0) and (CR1) are closure rules in the sense of
[19], p.17, and the existence of · is insured by Thm. 2.6, see pages 16–18 of [19].
We thus have X ∈ CR iff X = X.

It follows that (CR,⊆) has all greatest lower bounds, and they are given by⋂
. As a consequence, it has

⋂
CR as least element. It is thus an inf-semi lattice

with greatest element SN , hence a complete lattice.

Proposition 3.4. HN is the least element of CR.

Proof. We obviously have HN ⊆ C for all C ∈ CR, hence HN ⊆
⋂
CR. For the

converse, it suffices to remark that HN ∈ CR. 
�

We now define the interpretation of arrow types.

Proposition 3.5 (Arrow Type Constructor). The arrow type constructor
⇒: P(Λ)× P(Λ)→ P(Λ), defined as A ⇒ B =def {t | ∀u(u ∈ A ⇒ tu ∈ B)},
maps reducibility candidates A and B to a reducibility candidate.

Proof. Strong normalization and stability by reduction follows directly from that
of B. For (CR1), we have to show that if t ∈ N , then (t)→ ⊆ A ⇒ B implies
t ∈ A ⇒ B, i.e. u ∈ A ⇒ tu ∈ B. The crucial point is given by Rem. 3.2: since
tu ∈ N and t does not interact with the context [ ]u, we are done with (CR1)
applied to B, using an induction on u ∈ SN . 
�

Now, given ρ : V → CR, we can interpret types T ∈ T as reducibility candi-
dates �T �ρ ∈ CR, with �X�ρ =def ρ(X), �U ⇒ T �ρ =def �U�ρ ⇒ �T �ρ and
�∀X.T �ρ =def

⋂
{�T �ρ[C/X ] | C ∈ CR}. We can then prove soundness (	), and

strong normalization is a consequence of X ⊆ HN and Prop. 3.4. See [13, 12].

4 A General Study of Stability by Union of CR
We have seen that stability by intersection of CR is a consequence of the shape of
the clauses (CR0) and (CR1). Such shallow observations do not imply stability by
union, which must therefore be proved through a deeper analysis of CR. Indeed,
given C ⊆ CR, in order to get

⋃
C ∈ CR we must show that if t is a neutral term

with (t)→ ⊆
⋃
C, then every one-step reduct of t must be in the same C ∈ C.

We begin by stability by union of closure operators. In the next Proposition,
we assume given a set D and a closure operator · : P(D)→ P(D). Write x for
{x} and P(D) for {X | X ⊆ D}.
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Proposition 4.1 (Topological Closure of · ). Given a closure operator · :
P(D)→ P(D), let Ω be the set of non-empty X ⊆ D such that X =

⋃
{x | x ∈

X}. Then Ω is the smallest set such that P(D) ⊆ Ω and C ⊆ Ω ⇒
⋃
C,

⋂
C ∈ Ω.

Proof. For all X ∈ P(D) we have X =
⋃
{x | x ∈ X} since for all x ∈ X , x ⊆ X

and x ∈ x. It follows that P(D) ⊆ Ω. If C ⊆ Ω, then C =
⋃
{x | x ∈ C} for

all C ∈ C. Hence
⋃
C =

⋃
{x | x ∈

⋃
C}, and

⋃
C ∈ Ω. Moreover, if t ∈

⋂
C,

then for all C ∈ C, t ∈ C hence t ⊆ C. Therefore t ⊆
⋂
C, and it follows that⋂

C =
⋃
{t | t ∈

⋂
C}, i.e.

⋂
C ∈ Ω.

Now, let Ω ⊇ P(D) be stable by union and intersection. If X ∈ Ω then
X =

⋃
{x | x ∈ X}. But {x | x ∈ X} ⊆ Ω, hence

⋃
{x | x ∈ X} ∈ Ω. 
�

In other words, (D,Ω∪{∅}) is a topological space where the set of opens Ω∪{∅}
contains all · -closed sets. Proposition 4.1 implies that it is moreover the coarser
topology with this property: if Ω is a collection of opens that contains · -closed
sets, then Ω ⊆ Ω. We now use these facts to study the stability by union of
reducibility candidates.

Since we are concerned with properties independent from the calculus, we
work with an extension λext of λ2. We assume that every term typable in λ2 is
typable in λext and that λext is equipped with a rewrite relation, denoted by
→, that is finitely branching and contains �→β . Notations of Sec. 2 are imported
in λext. Finally, we assume given a set of neutral terms of λext, still denoted
by N , that contains the neutral terms of λ2.

Definition 4.2 (λext-Reducibility Candidates). The set of λext-reduci-
bility candidates, denoted by CR, is the set of all C ⊆ SN such that
(CR0) if t ∈ C and t→ u then u ∈ C,
(CR1) if t ∈ N and (∀u (t→ u ⇒ u ∈ C)) then t ∈ C.

As with λ2, CR is the set of closed sets for a closure operator · : P(SN ) →
P(SN ). An explicit inductive definition of · is useful:

Lemma 4.3 (The Closure Operator · of CR). Given X ⊆ SN , let X0 =def

(X)∗→, and for all i ≥ 0, Xi+1 =def Xi ∪ {t ∈ N | (t)→ ⊆ Xi}. Then, for all
X ⊆ SN , X =def

⋃
i≥0Xi is the smallest reducibility candidate containing X.

Proof. First, we show that X ∈ CR.
(CR0) Let t→ v and t ∈ X i with i as small as possible. If i = 0, then t ∈ (X)∗→,

hence v ∈ (X)∗→ = X0. Otherwise, i = j + 1, and v ∈ Xj .
(CR1) Let t ∈ N such that for all v ∈ (t)→, there is iv with v ∈ X iv . Since → is

finitely branching, there is a j greater than every iv, thus t ∈ Xj+1.
Second, by induction on i, we prove that if C ∈ CR and X ⊆ C, then Xi ⊆ C.

We have X0 = (X)∗→ ⊆ C by (CR0). For i ≥ 0, if t ∈ X i+1 \Xi, then t ∈ N and
by induction hypothesis, (t)→ ⊆ Xi ⊆ C. Hence t ∈ C by (CR1). 
�

Thanks to Lem. 4.3, we have an explicit definition of the closure operator of CR,
denoted by · . Now, Prop. 4.1 gives us Ω, which is the topological closure of · .
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We let CR =def Ω. Proposition. 4.1 implies that CR ⊆ CR and that CR is stable
by union iff CR = CR.

Before studying what insures the equality of CR and CR, let us have a look on
the structure of the latter. We begin by a characterization of the membership
t ∈ u that uses the weak observational preorder �.

Definition 4.4. Let t � u iff for all v /∈ N , t→∗ v ⇒ u→∗ v. We denote by
�SN the restriction of � to SN .

Observational preorders where introduced to characterize behavioral equiva-
lence: two pieces of programs are observationally equivalent iff when plugged
in a program context, the obtained programs both diverges or evaluates to the
same value. Contexts are arbitrary terms with a hole, including those of the form
t[ ] and λx.[ ]. With closed terms, thanks to Milner’s Context Lemma, this is
equivalent to observation in applicative contexts (our elimination contexts). Of
course, this fails for open terms. See [18, 16] for a presentation and references
on the subject.

In λ2, non-neutral terms are abstractions, hence closed non-neutral terms
correspond to the usual notion of value. Moreover, we have t � u iff for all E[ ],
for all v /∈ N , (E[t]→∗ v ⇒ E[u]→∗ v). Thus, with � we observe the reduction
to values of open terms plugged in elimination contexts. Hence the name weak
observational preorder. We generalize these ideas to the system λ2U+ in Sec. 7.

In order to characterize t ∈ u with �, we need a few properties. First, note
that t→ u implies u � t.

Proposition 4.5. Let X ⊆ SN . Then t ∈ X iff either t ∈ (X)∗→ or (t ∈ N and
(t)→ ⊆ X).

Proof. The ”if” direction directly follows from (CR0) and (CR1). Conversely, let
i be as small as possible such that t ∈ X i. Thus, either i = 0 and t ∈ (X)∗→ or
i = j + 1, t ∈ Xj+1 \Xj and by definition t ∈ N and (t)→ ⊆ Xj . 
�

As a consequence, all non-neutral terms of X are in (X)∗→. In other words, the
values of X are entirely determined by X .

Proposition 4.6. Let t ∈ N ∩ SN and X ⊆ SN . Then (t)→ ⊆ X iff for all
v /∈ N , t→∗ v ⇒ v ∈ (X)∗→.

Proof. For the ”only-if” direction, we reason by induction on t ∈ SN . Assume
that (t)→ ⊆ X and let t →∗ v′ /∈ N . Since t ∈ N , we have t → v →∗ v′ with
v ∈ X. If v /∈ N , then by Prop. 4.5 we have v ∈ (X)∗→, hence v′ ∈ (X)∗→.
Otherwise, since (v)→ ⊆ X we can apply the induction hypothesis and get
v′ ∈ (X)∗→.

For the converse, we also reason by induction on t ∈ SN . If t ∈ (X)∗→ then
we are done since (t)∗→ ⊆ (X)∗→ ⊆ X. Assume that t /∈ (X)∗→. Let v ∈ (t)→. If
v /∈ N , then by assumption v ∈ (X)∗→, hence v ∈ X. Otherwise, using (CR1) it
suffices to show that (v)→ ⊆ X. But by assumption, every v′ ∈ (v)∗→ \N belongs
to (X)∗→. Hence by induction hypothesis (v)→ ⊆ X . 
�
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Thanks to Proposition 4.6, each t is in fact an initial segment w.r.t. �SN .

Lemma 4.7. For all t ∈ SN , t = {u | u �SN t}.

Proof. By Prop. 4.6, u ∈ t iff t, u ∈ SN and either t →∗ u or u ∈ N and
(u)∗→ \ N ⊆ (t)∗→. But this is exactly u �SN t. 
�

This gives a nice straight structure to the elements of CR.

Theorem 4.8. Let O be the set of non empty subsets of SN which are downward
closed w.r.t. �SN , i.e. X ∈ O iff ∅ �= X ⊆ SN and for all t, u, if t ∈ X and
u �SN t then u ∈ X. Then we have CR = O.

Proof. Thanks to Lem. 4.7, we have X ∈ CR iff it is a non-empty subset of SN
such that X =

⋃
{t | t ∈ X} = {u | ∃t(u �SN t ∧ t ∈ X)}, i.e. X ∈ O. 
�

It is surprising that we can give such a simple structure to CR. The most impor-
tant, however, is the consequence on the stability by union of CR.

Corollary 4.9. CR is stable by union iff CR = O.

The structure of reducibility candidates is at a first sight not trivial and somehow
mysterious. It is therefore extremely interesting to understand what allows CR =
O, giving them a so simple structure. Hence the question of their stability by
union reveals important facts on their fundamental nature.

The next step is to characterize what implies CR = O.

Proposition 4.10. 1. CR ⊆ O.
2. O ⊆ CR iff for all t ∈ N ∩ SN , there is u ∈ (t)→ such that t �SN u.

Proof. 1. Let C ∈ CR. By Prop. 3.4, C �= ∅. If t ∈ C and u �SN t, then by
Lem. 4.7 we have u ∈ t ⊆ C. Hence C ∈ O.

2. Let C ∈ O. Since it is stable by reduction, it suffices to check that if t ∈ N
and (t)→ ⊆ C, then t ∈ C. But there is u ∈ (t)→ such that t �SN u, and
u ∈ C implies t ∈ C. Conversely, let C ∈ CR, t ∈ C and u �SN t. Then, by
Lem. 4.7, u ∈ t ⊆ C. 
�

The property of SN neutral terms expressed in Prop. 4.10.(2) is that a reduct u
of a neutral term t such that t �SN u is in some sense a principal reduct of t: the
values of t are exactly those of u. Moreover, u ∈ max�SN (t)→, i.e. a principal
reduct is maximal among all possible reducts.

For λ2, this has to be linked with call-by-name languages, in which terms to
be evaluated are neutral, and the evaluation preserves possible values.

Definition 4.11. A term u ∈ (t)→ is a principal reduct (written p.r.) of t iff
t � u and t is said to have the principal reduct property (written p.r.p.) when
either such a u exists or t is a normal form.

We reduce the stability by union of CR to the principal reduct property for
neutral terms.
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Corollary 4.12. We have C ⊆ CR ⇒
⋃
C ∈ CR iff every t ∈ N ∩ SN has the

principal reduct property.

As pointed out by Prop. 3.5, in order for t ∈ N to belong to C ∈ CR, C uses
information on the behavior of t in elimination contexts. This information is
given by the values of t, and clause (CR1) relies on the fact since t ∈ N , its
values are that of (t)→. But if t �SN u, the values of t are also values of u. That
is, if u ∈ C and t �SN u then t ∈ C, and it follows that t �SN u implies t ∈ u.
Moreover, Lem. 4.7 says that this exactly characterizes u: if it contains t, then
the values of t are values of u.

Now, recall that given C ⊆ CR, in order to get
⋃
C ∈ CR we must show that

if t ∈ N has (t)→ ⊆
⋃
C, then every v ∈ (t)→ must be in fact the same C ∈ C.

This amounts to say that (t)→ contains an u such that t �SN u, hence that t
has a principal reduct.

5 Stability by Union of CR in λ2

In this section, we show the p.r.p. for λ2. This leads to observe that reducibility
candidates are exactly the Tait’s saturated sets which are stable by reduction.
We do not give proofs since they are subsumed by those for λ2U+, presented
in Sec. 7.

The p.r.p. is a consequence of the standardization theorem of λ2. However,
since we only need this property on SN terms, it can be proved using a weaker
property, called weak standardization.

This property was coined in [2] as a consequence of standardization. However,
it admits a much direct proof, which rely on the orthogonality of the calculus.
By the way, it is less a weak standardization property than a standardization for
the weak head reduction, which corresponds to reduction in elimination contexts.

Definition 5.1 (Weak Head Reduction). The relation →H of weak head
reduction is defined as t→H u iff t = E[t′], t′ �→β u

′ and E[u′] = u. We denote
by HNF the set of terms in →H-normal form.

Lemma 5.2 (Weak Standardization). Let t �→β u and assume that E[t]→ v
with v �= E[u]. Then v = E′[t′] with (E[ ], t)→ (E′[ ], t′) and there exists u′ such
that t′ �→β u

′ and E[u]→∗ E′[u′].

In order to show that strongly normalizing neutral terms have the p.r.p., we use
in addition the fact that HNF ∩ N (i.e. the set of terms of the from E[x]), is
stable by reduction. We then obtain stability by union of CR, thanks to Cor. 4.12.

Lemma 5.3 (Principal Reduct Property). Let t ∈ N ∩ SN . If there is u
such that t→H u then it is a p.r. of t, otherwise every u ∈ (t)→ is a p.r. of t.

Theorem 5.4. If C ⊆ CR then
⋃
C ∈ CR.

The principal reduct property of neutral terms corresponds to the fact that
reducibility candidates are stable by strongly normalizing weak head expansions.



326 C. Riba

Lemma 5.5 (Weak Head Expansion and Reducibility Candidates). Let
C ∈ CR. If E[s] ∈ C, t �→β s and t ∈ SN then E[t] ∈ C.

Weak head reduction is the main notion of the Krivine Abstract Machine, and
stability by weak head expansion is the main property required by truth values
of Krivine and Danos [7].

Thanks to Cor. 4.9, we have shown that CR = O, thus giving a nice straight
structure to CR. Moreover, Lem. 5.3, 4.7 and 5.5 imply that for all C ∈ CR,
(SAT 1) if E[x] ∈ SN then E[x] ∈ C; and
(SAT 2) if E[s] ∈ C, t �→β s and t ∈ SN , then E[t] ∈ C.

Subsets of SN satisfying (SAT 1) and (SAT 2) are Tait’s saturated sets.

Definition 5.6. Let SAT be the set of all subsets S ⊆ SN satisfying (SAT 1)
and (SAT 2). We denote by SAT→ the collection of S ∈ SAT that are stable by
reduction: If t ∈ S and t→ u then u ∈ S (SAT 0).

The definition makes sense since in (SAT 1) we have E[x] ∈ SN , and, in (SAT 2)
we have E[t] ∈ SN by Lem. 5.5.

The stability by union of CR is therefore linked with the fact that every
C ∈ CR is saturated. This inclusion has been coined in [12]. The converse is
false, as shown by a counter-example given in [23] (Lem. 3.16 pp. 87–88). It
relies on the fact that saturated sets are not stable by reduction. However, we can
show that saturated sets that are stable by reduction are exactly the reducibility
candidates. This seems to have not been remarked before.

Theorem 5.7. SAT→ = CR.

6 The System λ2U+ of Product, Co-product and Positive
Iso-recursive Types

We now extend results of the previous section by applying Cor. 4.12 to a sys-
tem with more elaborated types. The system considered, called λ2U+, features
product, co-product, positive iso-recursive types and the final type 1. It is a
proper extension of λ2 [21]. Our presentation is inspired by that of [1]. Types
are extended with:

T, U ∈ T ::= . . . | T × U | T + U | μX.T | 1

where, in μX.T , X occurs only positively in T : any path from the root of T to an
occurrence of X chooses the left argument of ⇒ an even number of times. The
syntax of terms is enriched with corresponding introductions and eliminations:

s, t ∈ Λ ::= . . . | ()
| 〈t, u〉 | πit i ∈ {1, 2}
| inji t | case (u, x1.t1, x2.t2) i ∈ {1, 2}
| in t | out t
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We consider the following extension of β-reduction:

πi〈t1, t2〉 �→β ti case (inji u, x1.t1, x2.t2) �→β ti[u/xi] out (in t) �→β t .

We let→ be the smallest rewrite relation on Λ containing �→β . The type system
is enriched with the following additional rules:

(1 I)
Γ � () : 1

(×I)
Γ � t1 : T1 Γ � t2 : T2

Γ � 〈t1, t2〉 : T1 × T2
(×E)

Γ � t : T1 × T2

Γ � πit : Ti
(i ∈ {1, 2})

(+I)
Γ � t : Ti

Γ � inji t : T1 + T2
(i ∈ {1, 2}) (+E)

Γ � t : T1 + T2 Γ, x : Ti � ti : U

Γ � case (t, x1.t1, x2.t2) : U

(μI)
Γ � t : T [μX.T/X]

Γ � in t : μX.T
(μE)

Γ � t : μX.T

Γ � out t : T [μX.T/X]

Example 6.1. Our motivation to consider λ2U+ is that it is a very atomic
calculus for inductives types. For example, polymorphic lists can be encoded as
follows:

List =def ∀Y.μX.1 + Y ×X
nil =def in (inj1 ())

cons (x, xs) =def in (inj2 〈x, xs〉)
In [21], it is shown that higher-order primitive recursion can be defined using
iso-recursives types and the rule out (in t) �→β t, and moreover that this rule can
not be simulated in λ2 by means of β-reductions.

7 Reducibility and Stability by Union for λ2U+

We now introduce tools for reducibility in λ2U+. We then prove the p.r.p. and
equivalence of CR and a suitable version of SAT→.

We define the top reduction as �→β , and still denote by TNF the set of terms in
top-normal form. It is convenient to factorize the introduction-elimination dual-
ity of natural deduction with the following atomic contexts: atomic eliminations
contexts (aec) denoted by ε[ ] and atomic introduction contexts (aic) denoted by
ι[ ] are defined as follows:

ε[ ] ::= [ ]t | π1[ ] | π2[ ] | case ([ ], x1.t1, x2.t2) | out [ ] ;

ι[ ] ::= λx.[ ] | 〈[ ], t〉 | 〈t, [ ]〉 | inj1 [ ] | inj2 [ ] | in [ ] | () .
Note that the introduction context for the terminal type constructor is not

linear. The columns of the above array define a relation written ε[ ] ⊥ ι[ ]. We
have ε[ ] ⊥ ι[ ] when ε[ι[ ]] is a β-redex, except for the product, where we let

π1[ ] ⊥ 〈[ ], t〉 and π2[ ] ⊥ 〈t, [ ]〉
but π2[ ] �⊥ 〈[ ], t〉 and π1[ ] �⊥ 〈t, [ ]〉 .
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Then, to each aec ε[ ] corresponds the set ε[ ]⊥ of aic ι[ ] such that ε[ ] ⊥ ι[ ], and
conversely, ι[ ]⊥ is the set of aec ε[ ] such that ε[ ] ⊥ ι[ ]. In the following, we will
sometime write unambiguously ι[ ] ⊥ ε[ ] instead of ε[ ] ⊥ ι[ ]. The extension of
elimination contexts E[ ] is obvious: E[ ] ::= [ ] | ε[E[ ]].

Proposition 7.1. If E[ε[t]]→ v, then v = E′[t′] with (E[ ], ε[t])→ (E′[ ], t′).

Proof. By structural induction on E[ ]. The case E[ ] = [ ] is obvious. In the
other cases, we have E[ ] = ε′[F [ ]]. First, the reduction ε′[F [ε[t]]] → v can not
be a top reduction. Hence we have v = ε′′[v′] with (ε′[ ], v)→ (ε′′[ ], v′), and by
induction hypothesis v′ = F ′[t′] with (F [ ], t)→ (F ′[ ], t′). Take E′[ ] = ε′′[F ′[ ]].


�

Definition 7.2. We say that terms not of the form ι[t] are neutral and denote
by N the set of neutral terms.

Hence, the terms nil and cons(x, l) of Ex. 6.1 are not neutral. This strengthen
our intuition that non-neutral terms corresponds to values. Note that elimina-
tion contexts are a generalization of applicative contexts to product, coproduct
and iso-recursive types. We can now substantiate our claim that � is a weak
observational preorder.

Proposition 7.3. t � u iff ∀E[ ] (E[t]→∗ ι[h] ⇒ E[u]→∗ ι[h]).

Proof. Obviously, ∀E[ ] (E[t] � E[u]) implies t � u (take the empty context).
Conversely, assume that t � u. If E[t] →∗ ι[h], we are in the case that E[t] →∗
E′[ι′[h′]]→∗ ι[h] with (E[ ], t)→∗ (E′[ ], ι′[t′]). Since t � u, we have u→∗ ι′[h′],
hence E[u]→∗ E′[ι′[h′]]→∗ ι[h]. 
�

We obtain CR by instantiating Def. 4.2 with λ2U+ and N . Notions of weak
head reduction and weak head normal forms are directly adapted from Sec. 5,
with the obvious update of elimination contexts. Recall that u ∈ HNF iff for all
E[ ], t such that u = E[t], we have t ∈ TNF . It follows that untyped terms in
HNF ∩ N need not to be of the form E[x]. However, stability by reduction of
HNF ∩N still holds.

Proposition 7.4. If t ∈ HNF ∩N and t→ u, then u ∈ HNF ∩N .

Proof. We reason by structural induction on t. The case t ∈ X is trivial. Assume
t = ε[t1] and let t → t′. Since t ∈ HNF , we have t′ = ε′[t′1] with (t1, ε[ ]) →
(t′1, ε′[ ]), hence t′ ∈ N . If t1 ∈ N , then t1 ∈ N ∩ HNF and by induction
hypothesis t′1 ∈ N∩HNF . It follows that t′ = ε′[t′1] ∈ HNF . Otherwise, t1 = ι[t2]
with ε[ ] �⊥ ι[ ]. Hence, t′1 = ι′[t′2] with (t2, ι[ ])→ (t′2, ι

′[ ]), and ε′[ ] �⊥ ι′[ ]. Hence
t′ = ε′[ι′[t′2]] ∈ HNF . 
�

We now turn to weak standardization. It is stated and used for λ2U+ in [1].

Proposition 7.5. If t �→β u and t → v, then either v = u or there exists u′

such that v �→β u
′ ←∗ u.
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Proof. By cases on t �→β u.
t = (λx.t1)t2. In this case, u = t1[t2/x] and if v �= u, then v = (λx.t′1)t′2 with

(t1, t2)→ (t′1, t
′
2), and v �→β t

′
1[t′2/x]←∗ u.

t = πi〈t1, t2〉. In this case, u = ti, and if v �= u, then v = πi〈t′1, t′2〉 with (t1, t2)→
(t′1, t′2), and v �→β t

′
i ←∗ u.

t = case (inji r, x1.t1, x2.t2). In this case, u = ti[r/xi] and if v �= u, then v =
case (inji r

′, x1.t
′
1, x2.t

′
2) with (r, t1, t2)→ (r′, t′1, t

′
2) and v �→β t

′
i[r
′/xi]←∗ u.

t = out (in r). In this case, u = r and if v �= u, then v = out (in r′) with r → r′

and v �→β r
′ ← u. 
�

Lemma 7.6 (Weak Standardization). If t �→β u and E[t] → v, then either
v = E[u] or v = E′[t′] for some E′[ ], t′ such that (E[ ], t)→ (E′[ ], t′) and there
exists u′ such that t′ �→β u

′ and E[u]→∗ E′[u′].

Proof. Let E[t] → v with v �= E[u]. Since t �→β u, t is an elimination and by
Prop. 7.1, v = E′[t′] where (E[ ], t) → (E′[ ], t′). The case E[ ] → E′[ ] with
t = t′ is trivial. Otherwise, we have t→ t′ with E′[ ] = E[ ] and we conclude by
Prop. 7.5. 
�

It follows that strongly normalizing neutral terms have the p.r.p..

Lemma 7.7 (Principal Reduct Property). Let t ∈ N ∩ SN . If there is u
such that t→H u, then it is a p.r. of t, otherwise every u ∈ (t)→ is a p.r. of t.

Proof. Let t ∈ N ∩ SN . If t ∈ HNF , since HNF ∩N is stable by reduction by
Prop. 7.4, t never reduces to a non-neutral term. It follows that t �SN u for all
u ∈ (t)→. Otherwise, t →H u and by induction on t ∈ SN , we show that u is
the p.r. of t. If t →∗ v /∈ N , since t ∈ N , there is t′ such that t → t′ →∗ v. By
Lem. 7.6, if t′ �= u, there is u′ such that t′ →H u′ ←∗ u. Therefore, t′ ∈ N ∩SN
and by induction hypothesis t′ �SN u′, hence u→∗ u′ →∗ v. 
�

Using Cor. 4.12, we have thus proved:

Theorem 7.8. If C ⊆ CR then
⋃
C ∈ CR.

As in Sec. 5, we get stability of reducibility candidates by weak head expansion.

Lemma 7.9 (Weak Head Expansion and Reducibility Candidates). Let
C ∈ CR. If E[s] ∈ C, t �→β s and t ∈ SN , then E[t] ∈ C.

Proof. We obtain easily that E[t] ∈ SN , using Lem. 7.6 and an induction on
(E[ ], t) ∈ SN ×SN . Now, by Lem. 4.7, E[t] ∈ E[s] iff E[t] �SN E[s]. But this
follows from Lem. 7.7, and we get E[t] ∈ E[s] ⊆ C. 
�

Unlike reducibility candidates, saturated sets are modified. They use elimination
contexts in an essential way. The new clauses for SAT are the following:
(SAT 1) HNF ∩ SN ∩ N ⊆ S.
(SAT 2) If s ∈ S, t→H s and t ∈ SN then t ∈ S.
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As in Def. 5.6, we denote by SAT→ the collection of saturated sets that are stable
by reduction (axiom (SAT 0)).

Non-emptiness of SAT follows from Lem. 7.9. The clause (SAT 1) is unusual.
Indeed, we use it for correspondence with CR, but for strong normalization, it
is sufficient to require E[x] ∈ SN ⇒ E[x] ∈ S (SAT 1′). Moreover, well-typed
terms HNF ∩N are of the form E[x], hence (SAT 1′) would have been sufficient
with typed candidates (see [12]).

Theorem 7.10. SAT→ = CR.

Proof. We begin by showing that CR ⊆ SAT→. Let C ∈ CR. (SAT 0) follows
from (CR0). For (SAT 1), we can reason by induction on →, since by Prop. 7.4,
HNF ∩N ∩SN is stable by reduction. Finally, the satisfaction (SAT 2) directly
follows from Lem. 7.9.

Conversely, we show that SAT→ ⊆ CR. Let S ∈ SAT→. As above, (CR0)
follows from (SAT 0). For (CR1), we have to show that for every neutral term v
such that (v)→ ⊆ S, then v ∈ S. First, v ∈ SN since (v)→ ⊆ S ⊆ SN . Thus, we
conclude by (SAT 1) if v ∈ HNF . Otherwise, v = E[t] with t �→β s and E[s] ∈ S.
Thus v ∈ S by (SAT 2). 
�

8 Conclusion and Related Works

Related Works. There are interesting alternatives approaches, which may not
rely on stability by union. Using bi-orthogonality (see [7]), Melliès and Vouillon
present a semantic of types that is not stable by union, and instead relies on a
closer adequation between the interpretations and the typing rules [22].

Without unions and existentials, bi-orthogonals work well for strong normal-
ization, especially for classical logic [20]. With non-ambiguous left-linear calculus,
it is not unreasonable to expect that they can deal with existentials and union
types, but the proof would rely on non-trivial properties of the calculus.

Concluding Remarks. We have shown that, with some well-behaved calculi, Gi-
rard’s reducibility candidates are stable by union. This was commonly believed
to be false. Moreover, and maybe more important, we have shown that their def-
inition hide a very simple structure, namely that candidates are exactly the non
empty subsets of SN that are downward-closed w.r.t. the weak observational
preorder �SN .

This shed new light on the semantics of strong normalization. In particular, we
hope that this can lead to precise comparisons of bi-orthogonal and candidates.
A related question is to know when the soundness of elimination rules of union
and existentials types can be proved without stability by union of some type
interpretation.
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Department of Computer Science,
University of Illinois at Urbana-Champaign, USA

grosu@cs.uiuc.edu

Abstract. By adding the complement operator (¬), extended regular
expressions (ERE ) can encode regular languages non-elementarily more
succinctly than regular expressions. The ERE membership problem asks
whether a word w of size n belongs to the language of an ERE R of
size m. Unfortunately, the best known membership algorithms are either
non-elementary in m or otherwise require space Ω(n2) and time Ω(n3);
since in many practical applications n can be very large, these space and
time requirements could be prohibitive. In this paper we present an ERE
membership algorithm that runs in space O(n ·(log n+m) ·2m) and time
O(n2 · (log n +m) · 2m). The presented algorithm outperforms the best
known algorithms when n is exponentially larger than m.

1 Introduction

Regular expressions can compactly specify patterns in strings. Extended regu-
lar expressions (EREs), which add complementation (¬R) to the usual union
(R1 + R2), concatenation (R1 · R2), and repetition (R�) operators, make the
description of regular languages more convenient and more succinct. The mem-
bership problem for an ERE R and a word w is to decide whether w is in the
regular language generated by R.

Due to their simplicity and popularity, regular expressions, and implicitly the
membership problem, have many applications. There are programming and/or
scripting languages, such as Perl, which are mostly based on efficient implemen-
tations of pattern matching via regular expressions. Many languages either have
builtin efficient regular expression membership algorithms or provide libraries
for them. Testing is another application area; events produced by the execution
of physical processes or computer programs can be logged and then searched for
property violations. Also, [5] suggests applications in molecular biology. Since
many properties are more naturally expressed as what should not happen or
as intersection of several policies, EREs are particularly desirable. Moreover,
since the input words can be quite large (e.g., a chromosome can have hun-
dreds of millions of nucleobases, or a log file can have billions of events), ERE
membership algorithms that are efficient in the length of the word are highly
preferred.
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c© Springer-Verlag Berlin Heidelberg 2007



An Effective Algorithm for the Membership Problem for ERE 333

The simplest-minded solution would be generate a DFA or an NFA from R,
and then to check the membership of w in linear time with n by simply traversing
w letter-by-letter once. Unfortunately, this may not always be practical. This is
because the size of the NFA or DFA can be non-elementarily larger than R [10].
Even if one succeeded to store such an immense automaton, running it would still
be non-elementary on each letter in the input, because one needs non-elementarily
long labels for each state. There could admittedly be practical situations in which
one can quickly generate a DFA or an NFA from R; if this is the case, then one
should definitely use this simple algorithm. From a practical perspective, the work
in this paper can be seen as an alternative to the simple-minded algorithm, when
generating a standard automaton from R is not plausible.

There are many other ERE membership algorithms in precisely the same
category. The first such algorithm was introduced in [3] in 1979; it runs in space
O(n2 ·m) and time O(n3 ·m). A technique for speeding up membership algorithms
by a factor of logn is presented in [7]. Several ERE membership algorithms
have been published since 1979, such as [2,12,13,14,6,4], improving slightly1 the
complexity of the now classic algorithm in [3]. More precisely, they reduced
the space requirements to O(n2 · k + n · m) and the time to O(n3 · k + n2 ·
m) or worse, where k is the number of complement operators in R. An ERE
membership algorithm was presented in [9], which “rewrites” or “derives” the
ERE by each letter in the input word; the lower-bound result in [10] tells that
this algorithm is also worst-case non-elementary in the ERE, but, unlike in the
simplistic NFA/DFA generation algorithm, the worst-case penalty is not paid
upfront. At our knowledge, there are no ERE algorithms that are asymptotically
better than the non-elementary-in-m one based on generation of NFA/DFA or
than the dynamic-programming 27-year-old algorithm in [3].

In this paper we present an ERE membership algorithm that is not polyno-
mial, but which avoids the non-elementary explosion in the size of the ERE. More
precisely, it runs in space O(n·(logn+m)·2m) and in time O(n2 ·(logn+m)·2m).
When n is exponentially larger than m, in which case the “polynomial” algo-
rithms would be exponential in the ERE anyway, our algorithm asymptotically
outperforms all the known algorithms.

The basic idea of our algorithm is to repeatedly cut the EREs at complement
operators to obtain a data-structure of nested NFAs. Formally, this is performed
by introducing novel notions of contextual regular expressions and automata.
To achieve the effect of complementation at each cut point, special novel data-
structures, called jumping machines and implemented using priority queues, are
introduced; these encode information needed to “jump” to the next subword
which is not in the corresponding language. The advantage of jumping machines
is that one does not need to store (via indexes) all the subwords which are not
in the language, but only the next one; so we drop a factor of n in storage. The
price to pay is that we need to store additional information to be able to jump
to the next subword.

1 Some of these algorithms originally claimed better improvements, but they turned
out to be misanalysed – see [8] for a detailed discussion of this issue.
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2 Preliminaries, Notations and Assumptions

Numbers and memory. To simplify the analysis and explanation of our al-
gorithms, we adopt standard conventions about numbers and memory: numbers
take constant time to store to and retrieve from memory, either independently or
as elements of arrays or matrices. The companion report [8] gives an analysis of
the algorithms presented in this paper considering that number storage/retrieval
and operations on them (comparison, additions, etc.) and on memory require log-
arithmic time etc.; such pessimistic assumptions increase the time complexity
of our algorithm by a logarithmic factor [8] (in the size of the input word and
ERE). However, we still assume that logarithmic space is required to store a
“large” number when it appears in more complex data-structures. For example,
we build tables in our algorithm whose cells store pairs consisting of an index
between 1 and n (n is the length of the input word) and a subset of states in an
automaton having O(m) states (m is the size of the input ERE); in this case, we
will assume that it takes O(log n+m) space to store each cell in the table – this
is what actually gives the “logn+m” factor in the analysis of our algorithm. If
one thinks that we are over-conservative here since n and m are small enough
in practice that the number n · 2m fits in a constant number of memory units
(say, e.g., in two 64-bit words), then one can consider that our algorithm takes
O(n · 2m) space and O(n2 · 2m) time.

Languages. In this paper, Σ is a finite set called alphabet whose elements are
called letters, and X is a set of variables. The elements of Σ�, i.e., finite sequences
of letters in Σ, are called Σ-words or simply words. We let ε denote the empty
word. If w ∈ Σ� then we let |w| denote the length of w and wi the ith letter of w.
If w has n letters then we can also write w as w1w2 · · ·wn. If 1 ≤ i ≤ j ≤ n then
wiwi+1 · · ·wj is the subword of w between i and j. If i > j then wiwi+1 · · ·wj is
ε by convention. A language over Σ is a subset of Σ�. We let LΣ denote the set
of languages over Σ, i.e., the powerset P(Σ�). Let ∅ denote the empty language.
If L1, L2 ∈ LΣ then L1 · L2 is the language {α1α2 | α1 ∈ L1 and α2 ∈ L2}.
If L ∈ LΣ then L� is {α1α2 · · ·αn | n ≥ 0 and α1, α2, . . . , αn ∈ L} and ¬L is
Σ� − L.

Extended regular expressions. (EREs) define languages by inductively ap-
plying union (+), concatenation (·), Kleene Closure (�), intersection (∩), and
complementation (¬). The language of an ERE R, denoted by L(R), is de-
fined inductively as follows, where a is any letter in Σ: L(∅) = ∅, L(ε) = {ε},
L(a) = {a}, L(R1 + R2) = L(R1) ∪ L(R2), L(R1 · R2) = L(R1) · L(R2),
L(R�) = (L(R))�, L(R1 ∩ R2) = L(R1) ∩ L(R2), L(¬R) = ¬L(R). One can
define a procedure to check ε ∈ L(R) by just traversing R once. If R does not
contain ¬ and ∩ then it is a regular expression (RE). By applying De Morgan’s
law R1 ∩ R2 ≡ ¬(¬R1 + ¬R2), EREs can be linearly (in both time and size)
translated into equivalent EREs without intersection. Hence, in the sequel we
consider expressions without intersection. If Σ is not understood from context,
then we let EREΣ denote the set of EREs over letters in Σ and let REΣ denote
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Fig. 1. Thompson’s translation

the set of REs over Σ. We use R, R1, R2, R′, etc., for EREs, and r, r1, r2, r′,
etc., for REs.

The size of an ERE is the total number of occurrences of letters and com-
position operators (+, ·, �, and ¬) that it contains. We will frequently need to
check if ε ∈ L(R) for various subexpressions R of the original ERE ; we can
calculate all these ε-memberships in linear time in the original ERE , by a sim-
ple DFS traversal, updating the ε-membership of each subexpression from the
corresponding ε-memberships of its subexpressions.

For any map ϕ : X → EREΣ , we let ϕ : EREΣ∪X → EREΣ also denote
its unique extension to a morphism, that is, the map with ϕ(∅) = ∅, ϕ(ε) = ε,
ϕ(a) = a for any a ∈ Σ, ϕ(R1+R2) = ϕ(R1)+ϕ(R2), ϕ(R1 ·R2) = ϕ(R1)·ϕ(R2),
ϕ(R�) = (ϕ(R))�, and ϕ(¬R) = ¬ϕ(R); also, we let ϕ¬ : X → EREΣ denote
the map defined by ϕ¬(x) = ¬ϕ(x).

Automata. Non-deterministic finite automata (NFA) with ε-transitions are used
in this paper, i.e., tuples (S,Σ, δ, s0, F ), where S is a finite set of states, Σ is an
alphabet, δ : S× (Σ∪{ε})→ 2S is a transition function, s0 is an initial state, and
F is a set of final states. We let NFAΣ denote the set of such automata. It is well-
known that one can associate an NFA Ar to any regular expression r. Moreover,
the number of nodes and edges of Ar is linear with the size of r. A common RE-
to-NFA translation, due to Thompson [11], is shown in Figure 1. The resulting
NFA is linear with the size of the original RE. An important observation for this
paper is that a letter x occurs exactly once in r iff x occurs on exactly one edge
in Ar.

We assume a linear-time linear-space procedure Gen-NFA taking REs to
NFAs, using Thompson’s construction. There are two important NFA operations
that can be performed in linear space/time, namely ε-closure and the global step.
Given Q ⊆ S and a letter a, the ε-closure of Q is the set δ(Q, ε) of states that can
be reached starting with a state in Q and applying only ε-transitions, and the
global step δ(Q, a) is the set of states ∪s∈Qδ(s, a). We can encode sets of states
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in an NFA of m states as vectors of m bits: 1 means that the corresponding
state is in the set. The implementation of these operations is simple. The first,
e.g., maintains a queue T of states, originally equal to Q, that still need to be
processed; then it picks and removes a state from T and considers each of its
ε-transitions. If a new state is found, add it to both T and the result set (the
latter is initially empty). Repeat until T is empty. Also, intersection, union and
emptiness test on sets of states represented as vectors of size m take O(m).

Priority queues. [1] are structures useful to maintain sets, supporting insertion
and extraction of elements, as well as access to a “highest priority” element. They
are routinely implemented in linear space using heaps flattened in vectors, which
can be initialized in linear time; we assume an O(|E|) procedure Initialize(Q, E)
that initializes queue Q to hold the elements E (also called “heapify”). The
appealing aspect of priority queues is that insertion and extraction take log time,
while accessing the highest priority element takes constant time. These numbers,
however, assume that elements take constant space/time to store, access and
compare. We will accordingly tune these numbers (conservatively) when the
elements in E require more than constant space to be stored.

3 Contextual Regular Expressions and Automata

Definition 1. A contextual regular expression over letters Σ and vari-
ables X is a regular expression in REΣ∪X containing exactly one occurrence of
each variable in X. We let REΣ [X ] denote the set of contextual regular expres-
sions over Σ and X.

The restriction to one variable does not apply to the language of a contextual
RE. Indeed, if r ∈ REΣ [X ] then α ∈ L(r) can have zero, one or more occurrences
of any x ∈ X . The motivation for contextual REs comes from the fact that any
ERE can be decomposed in a “root” contextual regular expression, together with
an ERE with fewer complement operators associated to each variable. This well-
founded decomposition of EREs is a crucial step in our membership algorithm.

Proposition 1. For any R ∈ EREΣ, there is a set of variables X, an r ∈
REΣ [X ], and a map ϕ : X → EREΣ, such that R = ϕ¬(r). Moreover, for any
x ∈ X, the ERE ϕ(x) contains strictly fewer complement operators than R. We
call r the root of R.

In what follows we assume a procedure Decompose that takes EREs R to triples
(X, r, ϕ) as above. If one uses pointers to refer to regular (sub)expressions, then
one can decompose an ERE R into (X, r, ϕ) in O(mr) space and time, where mr

is the size of r.

Definition 2. Automata in NFAΣ∪X containing for each x ∈ X exactly one
edge labeled with x are called contextual automata over letters Σ and vari-
ables X. Let NFAΣ[X ] denote the set of such automata. To emphasize their
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contextual nature, we write such automata as tuples (S,Σ,X, δ, s0, F ) rather
then (S,Σ ∪X, δ, s0, F ). In any contextual automaton, let inx, outx ∈ S denote,
respectively, the source and the target states of the edge labeled x, for each x ∈ X.

Note that Thompson’s construction takes contextual REs in REΣ [X ] to contex-
tual NFAs in NFAΣ [X ]. One can associate any R ∈ EREΣ a contextual automa-
ton by first decomposing it into some (X, r, ϕ) and then taking Gen-NFA(r).
Continuing this automata generation process for each ϕ(x), one eventually gets
a structure of “nested” NFAs, one for each complement operator in the original
ERE . To ease the task of calculating ε-closures in such automata, we prefer to
shortcut a nested NFA by an ε-transition whenever it contains ε in its language:

Definition 3. Given R ∈ EREΣ decomposing to (X, r, ϕ), the root NFA of R
is the NFA returned by Gen-NFA(r) in which a new edge δ(inx, ε) = outx is
added for each x ∈ X with ε ∈ L(¬ϕ(x)).

With this, note that ε ∈ L(R) iff δ({s0}, ε)∩F �= ∅. Let us next give an automata-
based characterization for the membership of any w to L(R).

Definition 4. Let w = w1w2 · · ·wn ∈ Σ�, let R ∈ EREΣ decompose to (X, r, ϕ),
and let (S,Σ,X, δ, s0, F ) be the root NFA of R. Then we define Z0, Z1, Z2, ..., Zn
as the smallest sets of states closed under the following:

– s0 ∈ Z0;
– δ(Zi, ε) ⊆ Zi for each i ∈ {0, 1, ..., n};
– δ(Zi, wi+1) ⊆ Zi+1 for each i ∈ {0, 1, ..., n− 1};
– if inx ∈ Zi for some i ∈ {0, 1, ..., n} and x ∈ X then outx ∈ Zj for all
j ∈ {i+ 1, ..., n} with wi+1 · · ·wj ∈ L(¬ϕ(x)).

Note that the “smallest sets” in the definition above makes sense, because se-
quences of sets closed under the operations above are also closed under
component-wise intersection.

Proposition 2. With the notation above, w ∈ L(R) iff Zn ∩ F �= ∅.

The proposition above immediately implies that w �∈ L(R) iff Zn ∩ F = ∅.
Since the definition of Z0, Z1, ..., Zn is based on memberships of the subwords
wi+1 · · ·wj to the languages L(ϕ(x)), which can be iteratively reduced to gener-
ating the root NFA of ϕ(x) and then checking for emptiness the intersection of its
final states with some corresponding Z set obtained like Zn, one can now derive
a membership algorithm based on root automata. In what follows we present an
algorithm which, considering the information “wi+1 · · ·wj ∈ L(¬ϕ(x))” encoded
in some convenient way, calculates all the sets Z0, Z1, ..., Zn and then checks
for membership.

Definition 5. Given w = w1w2 · · ·wn ∈ Σ� and L ⊆ Σ�, a map t : {0, 1, ..., n−
1} × {1, 2, ..., n} → {0, 1} is a table for w and L if and only if for any
0 ≤ i < j ≤ n, t[i][j] = 1 iff wi+1 · · ·wj ∈ L.
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Memb-With-Tables(w,R)
Input: w = w1w2 · · ·wn ∈ Σ�, R ∈ ERE
Output: true / false
Globals:Z0, Z1, ..., Zn

1. %Gen-Table-Structures
2. Z0 ← {s0}
3. for i← 1, 2, ..., n do Zi ← ∅ endfor
4. for i← 0, 1, ..., n do
5.

... %Step-With-Tables
6. endfor
7. return Zn ∩ F �= ∅

macro %Gen-Table-Structures
1. (X, r, ϕ)← Decompose(R)
2. for all x ∈ X do
3.

... tx ← Gen-Table(w,ϕ(x))
4. endfor
5. (S,Σ,X, δ, s0, F )← Gen-NFA(r)
6. for all x ∈ X do
7.

... if ε �∈ L(ϕ(x)) then
8.

...
... δ(inx, ε)← outx

9.
... endif

10. endfor

Gen-Table(w,R)
Input: w = w1w2 · · ·wn ∈ Σ�, R ∈ ERE
Output: table t
1. %Gen-Table-Structures
2. for l = 0, 1, ..., n− 1 do
3.

... Zl ← {s0}
4.

... for i← l + 1, ..., n do
5.

...
... Zi ← ∅

6.
...

... t[l][i]← 0
7.

... endfor
8.

... for i← l, ..., n do
9.

...
... %Step-With-Tables

10.
...

... if Zi ∩ F = ∅ and (i > l) then
11.

...
...

... t[l][i]← 1
12.

...
... endif

13.
... endfor

14. endfor
15. return t

macro %Step-With-Tables

1. Zi ← δ(Zi, ε)
2. if i < n then
3.

... for all x ∈ X do
4.

...
... if inx ∈ Zi then

5.
...

...
... for j ← i+ 1, ..., n do

6.
...

...
...

... if tx[i][j] then
7.

...
...

...
...

... Zj ← Zj ∪ {outx}
8.

...
...

...
... endif

9.
...

...
... endfor

10.
...

... endif
11.

... endfor
12.

... Zi+1 ← Zi+1 ∪ δ(Zi, wi+1)
13. endif

Fig. 2. Membership algorithm using tables

The simplest way to represent a table is as (half) an n×n matrix of boolean val-
ues. As far as the calculation of Z0, Z1, ..., Zn and the membership of w to R are
concerned, a set of tables {tx table for w and ¬ϕ(x) | x ∈ X} would contain all
the necessary information regarding the map ϕ : X → EREΣ . Figure 2 shows an
ERE membership algorithm that generates the table of each ERE -subexpression
occurring under a complement from the tables of its subexpressions.

Proposition 3. The algorithm Memb-With-Tables(w,R) in Figure 2 returns
true if and only if w ∈ L(R). If |w| = n, |R| = m, and R contains k complement
operators, then this algorithm runs in space O(n2 · k + n ·m) and time O(n3 ·
k + n2 ·m).

Proof. To simplify its presentation and analysis, the algorithm in Figure 2 is
split into two procedures and 2 macros. The macros should be regarded “ad lit-
eram”, that is, one should simply replace their “invocation” by their pseudocode,
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character-by-character. %Gen-Table-Structures assumes some ERE R and
some word w, and first decomposes R into (X, r, ϕ), then generates the cor-
responding tables for each ¬ϕ(x) (in fact, for (non-asymptotic) efficiency, the
procedure Gen-Table is passed ϕ(x), but note that at its Steps 10-11 it ac-
tually sets the table bits to 1 when the subword is not in the language), and
finally generates the root automaton of R. The macro %Step-With-Tables
performs a “global step” in a root automaton. It assumes some step number
i, corresponding to the latest processed letter in w, for which all sets Z0, Z1,
..., Zi−1 are already completely calculated and for which the sets Zi, Zi+1, ...,
Zn are only partially calculated, and finishes the calculation of Zi, which only
needs an ε-closure, and then updates the remaining Zi+1, ..., Zn as follows: if Zi
contains any special state inx then the table tx is consulted on its level tx[i] and
all the sets Zj with wi+1 · · ·wj ∈ L(¬ϕ(x)) are updated with the special state
outx; finally, the set Zi+1 is also updated by processing the next letter, wi+1,
in the current global state, Zi. The procedure Gen-Table(w,R) will always be
called on a sub-ERE R occurring under a complement in the original ERE , for
which a table therefore needs to be generated. For each 0 ≤ l ≤ n− 1, it needs
to set to 1 all the entries t[l][i] for which wl+1 · · ·wi ∈ L(¬R) (note that R is
always some ϕ(x) in its “parent” ERE ). This can be done by first setting Zl to
{s0} and then simply traversing all the i’s, completing Zi and updating Zi+1, ...,
Zn, and also checking whether Zi contains any final state. The main procedure,
Memb-With-Tables, is now self-explanatory. This algorithm follows more or
less blindly Definition 4, so its correctness follows by Proposition 2.

Let us next calculate the complexity of this algorithm. Note that the sets Z0,
Z1, ..., Zn can be reused at each invocation of Memb-With-Tables and/or
Gen-Table, so we define them as global; these sets of states are represented as
vectors of bits of size m, so they take total space O(n ·m).

Let us first analyze %Gen-Table-Structures, both with respect to space
and time. Note that this macro is invoked by both Memb-With-Tables and
Gen-Table, and both of these have a current ERE R; let mr be the size of
the RE root r of R. Step 1 takes space and time O(mr), including the time
to update the bits stating the membership of ε to the language of each subex-
pression of r (and thus R). Steps 2-4 take space O(

∑
x∈X spacegt(x)) and time

O(
∑

x∈X timegt(x)), where spacegt(x) and timegt(x) are the space and the time
of Gen-Table(w,ϕ(x)). The O(n2) space needed to store the table tx will be
counted as part of spacegt(x); what is assigned to tx is a pointer to the table
already generated by Gen-Table(w,ϕ(x)). Step 5 takes space and time O(mr);
assume the worst case space here, so adding new edges (at most one per node)
to the automaton later will not require additional space. Since ϕ(x) already con-
tains the information ε ∈ L(ϕ(x)) and since no new space is needed to add a
new edge to a node in the automaton, Steps 6-10 take constant space and O(mr)
time. Summing all these up, we obtain that %Gen-Table-Structures takes
space O(mr +

∑
x∈X spacegt(x)) and time O(mr +

∑
x∈X timegt(x)).

Let us now analyze %Step-With-Tables. The space for the global sets Z0,
Z1, ..., Zn has already been counted, and the space for the other operators can
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be reused, so this macro should take constant space in a good implementation.
Anyhow, we can afford to assume, conservatively, that the space needed by the
various operators is not reused, so the total space of %Step-With-Tables is
O(mr). Steps 1 and 12 take time O(mr) and Step 7 takes O(1), so the total time
taken by %Step-With-Tables is O(|X | · n+mr).

Let us next analyze Gen-Table. Since it needs to create the table t of size
O(n2), one can readily see that it takes space O(n2 + mr +

∑
x∈X spacegt(x)).

Step 1 takes time O(mr +
∑

x∈X timegt(x)). Steps 8-12, taking the major time
in the outmost loop, take time O(n · (|X | · n+mr)), so the total time taken by
Gen-Table is O(n3 · |X |+ n2 ·mr +

∑
x∈X timegt(x)).

We can now analyze the main procedure, Memb-With-Tables. Without
making explicit the space and time consumed by Gen-Table, one can readily
see that Memb-With-Tables takes space O(mr +

∑
x∈X spacegt(x)) and time

O(n2 · |X | + n · mr · +
∑
x∈X timegt(x)). To complete the analysis, note that

Gen-Table is eventually invoked exactly once on every ERE R′ with ¬R′ a
subterm of the original ERE R. Since the sum of all the sizes mr′ of the RE
roots of these EREs R′ is O(m), one can relatively easily see that the total space
of Memb-With-Tables is O(n2 · k +m) plus the total space O(n ·m) to store
Z0, Z1, ..., Zn, that is, O(n2 · k + n ·m). One can similarly calculate the total
time of Memb-With-Tables to O(n3 · k + n2 ·m).

The space above can be non-asymptotically improved, by noting that once a
table is calculated for an ERE , the tables of its subexpressions are not necessary
anymore, so their space can be reused. Like the algorithms in [2,12,13,14,6,4], the
algorithm in Figure 2 provides only a slight improvement over the classic one in
[3]. Unfortunately, all known membership algorithms, including the one above,
still require space Ω(n2), which can be prohibitively large in many applications
of interest. The problem here comes from storing the tables tx for x ∈ X , each
requiring Θ(n2) space. We will next see that one can significantly reduce the
required space as a function of n, namely from n2 to n · logn. The idea is to
encode the languages of ϕ(x) for x ∈ X in a more space effective fashion.

4 An Effective ERE Membership Algorithm

Definition 6. A jumping machine P = (P, p0, π) consists of set P of states,
an initial state p0, and a jumping map π : {0, 1, ..., n − 1} × P →
({1, 2, ..., n} × P ) ∪ {⊥} with the property that for any 0 ≤ i < n and any
p ∈ P , if π(i, p) = (j, p′) then i < j. Given 0 ≤ i < n, we let π(i) de-
note the set {j1, j2, ..., jni} with π(i, p0) = (j1, p1), π(j1, p1) = (j2, p2), ...,
π(jni−1, pni−1) = (jni , pni), π(jni , pni) = ⊥. Given word w = w1w2 · · ·wn and
language L, we say that (P, p0, π) is a jumping machine for w and L if and
only if π(i) = {j | j > i, wi+1 · · ·wj ∈ L}.

Therefore, a jumping machine provides a mechanism to generate the sets π(i)
in a stepwise manner. A jumping machine for w and L can therefore eventually
produce the same information as a table for w and L. However, the advantage of
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Memb-With-Machines(w,R)
Input: w = w1w2 · · ·wn ∈ Σ�

R ∈ ERE
Output: true / false
Globals:Z′, Z
1. %Gen-Machine-Structures
2. %Initialize-Queues
3. Z′ ← {s0}
4. for i← 0, 1, ..., n do
5.

... %Step-With-Machines
6. endfor
7. return Z ∩ F �= ∅

macro %Gen-Machine-Structures
1. (X, r,ϕ)← Decompose(R)
2. for all x ∈ X do
3.

... (Px, p
x
0 , πx)← Gen-Machine(w, ϕ(x))

4. endfor
5. (S,Σ,X, δ, s0, F )← Gen-NFA(r)
6. for all x ∈ X do
7.

... if ε �∈ L(ϕ(x)) then
8.

...
... δ(inx, ε)← outx

9.
... endif

10. endfor

macro %Initialize-Queues
1. for all x ∈ X do
2.

... Initialize(Qx, {1, 2, ..., n} × Px)
3. endfor

Gen-Machine(w,R)
Input: w = w1w2 · · ·wn ∈ Σ�

R ∈ ERE
Output: machine (P, p0, π)
1. %Gen-Machine-Structures
2. P ← 2S ; p0 ← {s0}
3. for l = 0, 1, ..., n− 1 do
4.

... for all p ∈ P do
5.

...
... %Initialize-Queues

6.
...

... Z
′ ← p

7.
...

... for i← l, ..., n do
8.

...
...

... %Step-With-Machines
9.

...
...

... if Z ∩ F = ∅ and (i > l) then
10.

...
...

...
... πx[l][p]← i; break-loop

11.
...

...
... endif

12.
...

... endfor
13.

... endfor
14. endfor
15. return (P, p0, π)

macro %Step-With-Machines
1. for all x ∈ X do
2.

... if key(Top(Qx)) equals i then
3.

...
... Z

′ ← Z′ ∪ {outx}
4.

...
... while key(Top(Qx)) equals i do

5.
...

...
... (i, px)← Extract-Top(Qx)

6.
...

...
... Insert(Qx, πx[i][px])

7.
...

... endwhile
8.

... endif
9. endfor

10. Z ← δ(Z′, ε)
11. if i < n then
12.

... for all x ∈ X do
13.

...
... if inx ∈ Z then

14.
...

...
... Insert(Qx, πx[i][px

0 ])
15.

...
... endif

16.
... endfor

17.
... Z

′ ← δ(Z,wi+1)
18. endif

Fig. 3. Membership algorithm using jumping machines

jumping machines in contrast to tables is that they may require much less space
to be stored. Indeed, a machine (P, p0, π) can be encoded in space Θ(n · |P | ·
(logn+ log |P |)), namely when encoded as a n× |P | matrix storing in each cell
an element in ({1, 2, ..., n}×P )∪ {⊥}. This space can be roughly approximated
with Θ(n · logn) when n is significantly larger than |P |, as opposed to Θ(n2) as
required by tables.

Figure 3 shows an ERE membership algorithm based on jumping machines,
that modifies the one in Figure 2 correspondingly.
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Theorem 1. Memb-With-Machines(w,R) in Figure 3 returns true iff w ∈
L(R). If |w| = n and |R| = m then Memb-With-Machines(w,R) runs in
space O(n · (logn+m) · 2m) and in time O(n2 · (log n+m) · 2m).

Proof. One may show the correctness of this algorithm by analogy with the
table-based algorithm in Figure 2, which is the reason for which we actually
presented the table-based algorithm. In the table-based algorithm, given an ERE
R that decomposed to (X, r, ϕ), we maintained a table tx listing explicitly the
entire “future” of each ϕ(x) w.r.t. the remaining suffix of w (i.e., the set of
future indexes 1 ≤ j ≤ n for which the special state outx needs to be added
to the current set of states Zj at that moment). We now maintain a jumping
machine Px = (Px, px0 , π) instead, which, at any “moment”, i.e., index 0 ≤
i ≤ n − 1, “knows” explicitly only the first future moment when outx needs
to be considered, namely the one given by the first component of π[i][{px0}].
However, the jumping machine also “freezes” its corresponding state at that
future moment (the second component of π[i][{px0}]), so that it implicitly “knows”
how to generate the entire information in the corresponding table in the table-
based algorithm; but this will be done on a by-need basis.

Like in the table-based algorithm, the ultimate purpose of the data-structures,
jumping machines in this case, is to detect the future indexes at which the
special states outx need to be included in the set of (future) current states. In
the table-based algorithm, the sets Z0, Z1, ..., Zn accumulated this information
progressively, by simply transferring it from the tables. Since the tables are
not available anymore, when the special state inx is encountered during the
global step of the root automaton, we need to store somewhere the first future
moment, say i, that outx needs to be considered. That informal “somewhere”
can be effectively replaced by a priority queue data-structure,Qx. Since the state
inx can be encountered several times before that moment i, each time starting
a new “jumping session” in Px, we need to store all the first future moments
to consider outx of all the “sessions” that the jumping machine Px can be in.
Then at any global step of the algorithm, one needs to check whether any of
the jumping machine sessions “predicted” the current moment as one to include
outx. If that is the case then, besides including outx in the current global state,
one also needs to advance the corresponding session in the jumping machine to
its next “predicted” moment to include the state outx. This is what Steps 1-9
in %Step-With-Machines do. To accomplish this task properly, we store not
only the first future moments of each session in the priority queue, but also the
corresponding jumping machine session. Since several different sessions in Px
could have predicted the same current moment, all these sessions need to be
advanced to their next predicted future moments to consider outx (Steps 4-7 in
%Step-With-Machines). Making the intuitions above rigorous, the algorithm
Memb-With-Machines in Figure 3 flows in a one-to-one analogy to the table-
based algorithm in Figure 2. As a “synchronization” point in this analogy, note
that Z at Step 10 in %Step-With-Machines corresponds to Zi at Step 1 in
%Step-With-Tables.
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Let us next analyze the space and time complexity of this algorithm. Following
a similar analysis to that of %Gen-Table-Structures, one immediately gets
that %Gen-Machine-Structures requires space O(mr +

∑
x∈X spacegm(x))

and time O(mr +
∑
x∈X timegm(x)). Gen-Machine tells us that Px will have

size 2mx , where mx is the size of the root of ϕ(x). Since we need to insert
|{1, 2, ..., n} × Px|, which is n · 2mx , in the priority queue Qx, and since each
element requires space log(n · 2mx) to be stored as part of the Initialize step
of the queue, one obtains that %Initialize-Queues takes space and time O(n ·∑

x∈X 2mx · log(n · 2mx)). %Step-With-Machines is invoked at places where
all the memory it needs is allocated, so it takes constant space. The crucial
observation in the time analysis of %Step-With-Machines is that the loop at
Steps 4-7 executes at most 2mx times, because there can be at most that many
pairs (i, p) in total and because we do not allow duplicates in queues. Therefore,
Steps 1-9 take time O(

∑
x∈X 2mx · log(n · 2mx)). Steps 10-18 only add time

O(mr), where mr is the size of r, so the total time of %Step-With-Machines
is O(

∑
x∈X 2mx · log(n · 2mx) +mr).

Let us now analyze the remaining two procedures. Step 1 in each of them takes
space O(mr +

∑
x∈X spacegm(x)). Gen-Machine needs to allocate a jumping

machine, whose space is dominated by the matrix π of size n × 2mr keeping
elements in {1, 2, ..., n} × 2S , so each element of size log(n · 2mr). Therefore,
the total space required by π is O(n · 2mr · log(n · 2mr)). Since %Initialize-
Queues at Step 5 can reuse the same space for each iteration of the loop at
Steps 4-13, we conclude that the total space required by Gen-Machine is O(n ·
(2mr · log(n · 2mr) +

∑
x∈X 2mx · log(n · 2mx)) +

∑
x∈X spacegm(x)). Time-wise,

note that the loops at Steps 3 and 4, respectively, add a factor of n · 2mr to
the time of Steps 5-12. After calculations, we get that the total time of Gen-
Machine is O(n2 · 2mr · (mr +

∑
x∈X 2mx · log(n · 2mx)) +

∑
x∈X timegm(x)).

Without making explicit the space and time of the invoked Gen-Machine, one
can quickly see that Memb-With-Machines takes space O(mr+n ·

∑
x∈X 2mx ·

log(n ·2mx)+
∑

x∈X spacegm(x)) and time O(n ·(mr+
∑

x∈X 2mx · log(n ·2mx))+∑
x∈X timegm(x)).
Let us now put all these together by iteratively expanding all the spacegm(x)

and timegm(x). Let us first calculate the space. Note that if one iteratively
expands the terms spacegm(x) that occur in the space complexity of Memb-
With-Machines, then each term of the form n · 2mx · log(n · 2mx) will occur
exactly twice. The resulting space then will be O(mr+n ·

∑
r′ 2mr′ · log(n ·2mr′ )),

which is O(mr +n · logn ·
∑
r′ 2mr′ +n ·

∑
r′ mr′ · 2mr′ ), where r′ ranges over all

the RE roots of all EREs R′ occurring under a ¬ operator in the original ERE ,
and mr′ is the size of r′. Since mr′ ≤ m and since

∑
r′ 2m

′
r ≤ 2

∑
r′ mr′ = 2m,

by overestimation we get that the space required by Memb-With-Machines
is O(n · (log n + m) · 2m). The total time of Memb-With-Machines can be
calculated in a similar manner to O(n2 · (log n+m) · 2m).

Corollary 1. If n > 2m, then our ERE-membership algorithm above runs in
space O(n · logn · 2m) and time O(n2 · log n · 2m).
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Hence, if n > 2m, our algorithm above runs in space O(n · logn · 2m), com-
pared to O(n2 · k + n ·m) (k is the number of complements in the ERE), the
space required by the best known algorithms to solve the same problem; all
algorithms, including ours, run in time a factor of n larger than their corre-
sponding space. When does the algorithm proposed in this paper outperform
the other algorithms? Roughly speaking, if k = Θ(m) then by the monotonicity
of the function x/ log x when x > 2, one gets n/ logn > 2m/m, that is, that
n · logn · 2m is asymptotically better than n2 · k, so our algorithm wins. On
the other hand, if k = Θ(1) then our algorithm again wins, but this time when
n > m · 2m; however, if k = Θ(1) then one is likely better off using the standard
NFA-to-DFA-then-complement algorithm.

5 Conclusion

Previous known algorithms to test whether a word of size n is in the language of
an ERE of size m are either space/time non-elementary in m or otherwise space
Ω(n2) and time Ω(n3). In the 27 years that passed since the first non-elementary
algorithm has been given in [3], several algorithms for the ERE membership
problem have been proposed. Unfortunately, none of them improved significantly
the original algorithm in [3]. In particular, all the current non-elementary-in-m
algorithms require space Ω(n2), which is prohibitive in the context of some
applications of interest. For example, Ω(n2) means more than 1TB of memory
when n is 1 million, and more than what today’s technology can offer when n
is larger than 1 billion. In this paper we presented an algorithm which is simply
exponential in m but is in the order of n·logn space-wise and n2 ·log n time-wise.
The proposed algorithm outperforms the known polynomial algorithms when n
is exponentially larger than m.

A novel data-structure, called jumping machine, was also introduced in this
paper and played a crucial technical role in our algorithm. It would be interesting
to investigate to what extent the jumping machines can be used for improving
other automata-theoretic constructions (that use two dimensional tables).
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8. G. Roşu. An effective algorithm for the membership problem for extended regular
expressions. Technical Report UIUCDCS-R-2005-2964, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.
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Abstract. Some decision problems related to balanced context-free lan-
guages are important for their application to the static analysis of pro-
grams generating XML strings. One such problem is the balancedness
problem which decides whether or not the language of a given context-
free grammar (CFG) over a paired alphabet is balanced. Another
important problem is the validation problem which decides whether or
not the language of a CFG is contained by that of a regular hedge
grammar (RHG). This paper gives two new results; (1) the balanced-
ness problem is in PTIME; and (2) the CFG-RHG containment problem
is 2EXPTIME-complete.

1 Introduction

The study of balanced context-free languages or parenthesis context-free lan-
guages dates back to the 1960s and 1970s [McN67, Knu67, Tak75]. Recently
balanced context-free languages attract new interests because of their applica-
tion to XML-related problems [BB02b, BB02a, KM06], e.g., the static analysis
of programs generating XML strings. In the previous work [MT06], we give algo-
rithms to two such problems. This paper continues that study and gives answers
to problems previously left open.

Let A be a base alphabet. Then, we introduce a paired alphabet consisting of
two sets Á and À:

Á = { á | a ∈ A } À = { à | a ∈ A }

where Á and À correspond to the set of start tags and the set of end tags,
respectively. We consider that á and à match. We write Σ for Á ∪ À. Then the
fundamental notion on a string over a paired alphabet is whether it is balanced.
For example, áb́b̀ćc̀à and áàb́b̀ are balanced, but áb̀ and áb́b̀ are not. This notion
of balanced strings corresponds to well-formed documents in XML. We call the
set of all balanced strings B(Σ) the Dyck set over Σ [Ber79].

We consider context-free grammars over paired alphabets. The first problem to
ask is the balancedness problem. Namely, whether or not the language of a given
context-free grammar (CFG) G is balanced, or whether or not L(G) ⊆ B(Σ). To

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 346–360, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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our knowledge, the best known algorithm for this problem requires exponential
time. However this is not optimal. We will prove that this problem in actually
in PTIME.

This PTIME algorithm consists of two steps. The first step is to check the
balancedness of the language as a grammar of a single kind of parentheses. We
here use a fixpoint algorithm based on the algorithms by Knuth [Knu67], and
Berstel and Boasson [BB02b]. However, we give a finer analysis of the number of
iterations needed to reach fixpoint, which at first glance seems to be exponential
to the size of the grammar, but in fact it is linear. The second step is to check
each matched letters are of the same kind. Consider a CFG G with a singleton
language. Such a CFG is sometimes called a straight line program (SLP). Assume
that in this G, we have a production rule I → XY whose X and Y derive strings
φ ∈ Á∗ and ψ ∈ À∗, respectively, of the same length. Now clearly, the singleton
language of G is balanced if φ is identical to the reverse of ψ by ignoring ´ and `
signs. Plandowski has shown that the problem of deciding the equivalence of two
SLPs, and hence the balancedness of this L(G), is in PTIME [Pla94]. We later
show how to apply Plandowski’s algorithm to the problem for general CFGs.

The second problem is the validation problem. Our previous work discussed
the problem whether L(G) ⊆ L(G′) holds where G is a CFG and G′ is either
an (i) XML grammar or (ii) regular hedge grammar (RHG). In particular, the
RHG defines an important language class corresponding to regular languages
over trees. Indeed, any regular hedge language can be defined only from the
following two kinds of productions.

X → áY àZ or X → ε.

This corresponds to non-deterministic tree automata (NTA) on binary trees.
The best known time complexity for the CFG-RHG containment is doubly ex-
ponential. This is actually optimal. In this paper, we prove that this problem is
2EXPTIME-hard.

A parenthesis grammar (PG) [McN67, Knu67] is a grammar with a single kind
of parentheses, e.g., [ and ], and with production rules restricted to the following
form.

X → [Y1 · · ·Yk] or X → a

Here letters a can be considered as the abbreviation of áà. It is then easy to see
that the class of the PG is a subclass of the class of the RHG. We actually prove
that the containment L(G) ⊆ L(G′) where G′ is PG is already 2EXPTIME-
hard. The idea of the proof comes from the observation of the gap between
derivation trees and parse trees of balanced languages generated from CFGs.
Namely, a single node on a parse tree, i.e., matching parentheses, can be split
to two 2O(n)-distant nodes in the corresponding derivation tree.

The rest of the paper is organized as follows. Section 2 explains the algo-
rithm for the balancedness problem. Section 3 proves 2EXPTIME-hardness of
the CFG-RHG containment problem. Section 4 summarizes the related work.
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c(φ)

d(φ)

(a) c(φ) and d(φ)

σ

X

n

.......

c(φX)

(b) derivation tree of φX

Fig. 1. Illustration of c(φ), d(φ) and φX

2 PTIME Balancedness Check

We develop an algorithm which decides in polynomial time whether or not the
language of a context-free grammar is balanced. The algorithm has two steps.
In the first step, we only check shapes of strings. The language of a grammar
is shape-balanced iff it is balanced by treating it as if using a single pair of
parentheses, e.g., áb̀ is not balanced, but shape-balanced. In this step, we also
pick up a string with the deepest valley in the set of strings produced from each
nonterminal. The second step is the check of color-balancedness, i.e., we never
see corresponding á and b̀ such that a �= b.

In this section, we assume a grammar G = (Σ, V,R, I) such that all produc-
tion rules are in the form X → α or X → αβ where α, β ∈ Σ �V . We can
convert arbitrary CFGs into this form in linear size1. We also assume that G
is reduced. That is, every nonterminal is accessible from the start symbol and
every nonterminal produces at least one terminal string. By a notation C[], we
mean a string containing a hole, which is filled with a string φ as C[φ].

2.1 Checking Balancedness of Shapes

The shape of a string is intuitively understood by reading this string from left
to right as a line graph. Each letter à corresponds to a descending slope of the
graph, and each á to a climbing slope of the same unit, respectively. Now we
obtain the shape of a string by

– Keeping the levels of both ends of this line graph.
– Erase all valleys other than the one deepest in the graph.

1 More precisely, we obtain G such that L(G) = L(G′)\{ε} from G′. Removing ε does
not change the balancedness.
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Formally, we say a string φ is shape-balanced if repeatedly removing all matching
áb̀ from φ gives an empty string. Any string φ ∈ Σ∗ is reduced to the following
form with this reduction.

ài · · · à1b́1 · · · b́j
We identify the shape of φ by c(φ) and d(φ) defined as c(φ) = i and d(φ) = i− j.
Here c(φ) is a nonnegative integer denoting the depth of the deepest valley
measured from the left end, and d(φ) is a possibly-negative integer denoting
the level of the right end measured from the left end (cf. Fig. 1(a)). A string φ
is shape-balanced iff c(φ) = d(φ) = 0. The language L(G) of a grammar G is
shape-balanced if all strings in the language are shape-balanced.

If a grammar has a shape-balanced language, each language corresponding to
its nonterminal X has constant d(φ), i.e., d(φ) = d(ψ) if X ∗⇒ φ, ψ. Further-
more, for each nonterminal X , there is a bound m such that X ∗⇒ φ implies
c(φ) ≤ m. To see this, consider the derivation I

∗⇒ C[X ]. This C[] must be in
the form ψ0á1ψ1 · · · áiψi[]ζj b̀j · · · b̀1ζ0 with ψ0, . . . , ψi, ζ0, . . . , ζj shape-balanced.
Since c(C[φ]) = d(C[φ]) = 0 for any X ∗⇒ φ, we have c(φ) ≤ i and d(φ) = i− j.

The bound of c(φ) implies the existence of, not necessarily unique, element
φX such that X ∗⇒ φX with maximum depth c(φX) (= m). Here is the main
proposition about this φX .

Proposition 1. Assume G = (Σ, V,R, I) such that L(G) is shape-balanced.
For each X ∈ V , we have φX with maximum c(φX), such that the height of the
derivation tree is bounded by 2n+ 1 where n = |V |.
Note that L(G) is shape-balanced iff c(φI) = d(φI) = 0. This proposition bounds
the number of iterations to find out φI , which is linear to the size of the grammar.
To prove this proposition, we need analysis on primary paths of derivation trees.

See Fig. 1(b). This figure explains how given a derivation tree for X ∗⇒ φ, we
compute the depth of each valley in φ. Assume a path t0, t1, . . . , tk(= t) in the
derivation tree where t0 is the root, and t is a leaf labeled either as á or à. We
would like to compute the depth c(t) of the valley found around this occurrence
of á or à. Intuitively, this value is computed from the sum of all d(ψ) where ψ is
a substring corresponding to each branch appearing in the left of the path to t.

In this path, each non-leaf node ti is labeled by a nonterminal X ∈ V and
associated with a rule X → α or X → αβ ∈ R. If ti+1 is the first successor of
ti labeled by α, the derivation by X → α or X → αβ does not contribute to
deepening the valley around t. On the other hand, if ti+1 is the second successor
labeled by β, c(t) is increased by d(ψ) where α ∗⇒ ψ is a sub-derivation for the
first successor of ti. If the leaf node t is labeled by á, the valley exists on the
left of this occurrence of á. On the other hand, if it is à, the valley exists on the
right, so that we increase c(t) by 1. Now the primary path of φ is a path to a
leaf t in the derivation tree with maximum c(t). Then clearly this c(t) is equal
to c(φ).

Now assume that the grammar has a shaped-balanced language. Then the prob-
lem of finding out φX maximizing c(φX) becomes the problem of finding out a
primary path, in a certain derivation tree for X , to the leaf t maximizing c(t).
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This problem can be considered as a graph problem. We can draw a graph
whose vertices correspond to V �Σ, and whose edge from X to γ corresponds to
X → γ or X → αβ ∈ R such that either γ = α or β. Now we assign the weight
corresponding to the increase in the depth c(t) to each edge of this graph. The
grammar has a shaped-balanced language, so that we can determine constant
d(φX) for each nonterminal X . Let d(φá) = −1 and d(φà) = 1.

– For each edge from X to α where α ∈ V � Á,
• if this edge corresponds to X → α or X → αβ, we give the weight 0,
• if this edge corresponds to X → βα, we give the weight d(φβ).

– For each edge from X to à,
• if this edge corresponds to X → à or X → àβ, we give the weight 1,
• if this edge corresponds to X → βà, we give the weight d(φβ) + 1.

For example, consider the following grammar with the shape-balanced language.

I → Z0Z1 Z0 → áb́ Z1 → Z1I Z1 → b̀à

In this grammar, we always have d(φ) = −2 if Z0
∗⇒ φ, so that the edge from I

to Z1 is given weight −2.

b́ Z0−1
��

0

��

I
0��

−2

��Z1
2��

0

��

1

��

2
�� à

á b̀

The problem of finding out a primary path with maximum weight first corre-
sponds to the detection of positive cycles in the graph. If there is no such cycle,
the problem reduces to the longest (maximum-weight) path problem.

Indeed, if the grammar has a shaped-balanced language, the graph constructed
as such has no positive cycles. If there is such a cycle, clearly we fail to find any
primary path with maximum weight, contradicting the shape-balancedness. On
the other hand, if there is no such cycle, then for any path containing the same
vertex twice, we can always find another path with at least the same weight,
and without such duplicated occurrence of vertices. Now this proves that we can
always find a maximum-weight path of length at most n+ 1.

Fig. 1(b) illustrates how we construct φX . The length of the primary path in
φX can be made at most n+1. We can use arbitrary derivation trees for subtrees
not related to the primary path, whose height can be made at most n + 1. To
sum up, the height of the derivation of φX can be made at most 2n+ 1, proving
Proposition 1.

2.2 Straight Line Programs for φX

If only concerning the shape-balancedness, it is enough to compute the shape
of this φX , i.e., c(φX) and d(φX). This is rather easy. However for the color-
balancedness, we need to compute φX themselves. Unfortunately, in the worst
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case, φX are not of polynomial length, so that we cannot obtain a PTIME
algorithm if they are explicitly represented as strings. We here consider the
compressed string representation using sharing graphs.

Definition 1. (Straight Line Program) A straight line program (SLP) is an
acyclic CFG without alternatives in production rules.

In other words, an SLP is a CFG generating a singleton set. We give an algorithm
to find each φX as an SLP in Fig. 2. This algorithm combines the fixpoint
algorithm of shape-balancedness check with Bellman-Ford’s algorithm for the
longest path problem where the graph does not contain positive cycles [Law76].

This algorithm needs to be repeated 2n+ 1 times. After S2n+1 is computed,
we first check S2n+1(X) = S2n(X) for all X ∈ V . If so, this means that the
algorithm reaches the fixpoint, so that it could find φX with maximum depth for
each X . Otherwise, the algorithm could not find φX with the height of derivation
2n+ 1, so that the shape-balancedness has failed from Proposition 1. The first
and second component of S2n(X) denote c(φX) and d(φX), respectively, so that
we then check that S2n(I) = (0, 0, ).

After the shape-balancedness check has passed, we construct φX for each
nonterminal X of the grammar. The third component of S2n(X) corresponds to
primary paths in the SLP for φX . We introduce a set of nonterminals V = {X |
X ∈ V } and define the set of rules P in the form X → θ where θ = α, αβ or αβ.

P = {X → θ | S2n(X) = ( , , X → θ), X ∈ V }

This P corresponds to the longest paths trees of Bellman-Ford algorithm com-
puting a collection of longest paths for any source-target pair in the graph. For
example, the following trees show the solution of the longest path problem in
the previous section, where target vertices correspond to terminals.

b́ Z0

0

��

I
0�� Z1 2

�� à

á b̀

This means that we use the same set of rules P to compute any φX . The following
P corresponds to the above solution where á = á and à = à.

I → Z0Z1 Z0 → áb́ Z1 → b̀à

Finally, we construct a set of rules U . This is by induction on the depth k of
the derivation. Let U0 = {}, and at k+1-th step, choose and add exactly one rule
Y → α or Y → αβ in R to Uk+1 such that Y /∈ dom(Uk), and α, β ∈ dom(Uk).
Here dom(U) = Σ � {Y ∈ V | Y → ∈ U}. We let U = Un. By construction,
dom(U) = Σ � V , for each Y ∈ V we have exactly one rule in U , and U induces
no cycles.

The following SLP only has the size linear to the original grammar G.

Algorithm 1. We obtain the SLP for φX as (Σ, V � V , U � P,X).
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Input: CFG (Σ,V,R, I).
Output: A mapping Sk ∈ (Σ �V )→ (N×N×({X → θ | θ = α, αβ, αβ}�{•})�{⊥}).

1 We first initialize S0(X) for X ∈ V and Sk(σ) for σ ∈ Σ as follows.

S0(X) = ⊥, Sk(á) = (0,−1, •), Sk(à) = (1, 1, •)
2 We iteratively compute Sk+1(X) for X ∈ V as follows.

– For each of (i) X → α or (ii) X → αβ, such that Sk(α) and Sk(β) (if (ii)) are
not ⊥. Assume that Sk(α), Sk(β) and Sk(X) (if not ⊥) are as follows.

Sk(α) = (c1, d1, ), Sk(β) = (c2, d2, ), Sk(X) = (c0, d0, )

In case (ii) with Sk(X) �= ⊥, we first confirm that d0 = d1 + d2. If this fails,
the shape-balancedness has failed. We then compute Sk+1(X) as follows. Let
d3 = d1 + d2, c3 = d1 + c2, and σ = σ.

Sk+1(X) =

⎧
⎪⎪⎨

⎪⎪⎩

(c1, d1,X → α) ((i), c1 > c0 if Sk(X) �= ⊥)

(c1, d3,X → αβ) ((ii), c1 ≥ c3, and c1 > c0 if Sk(X) �= ⊥)

(c3, d3,X → αβ) ((ii), c1 < c3, and c3 > c0 if Sk(X) �= ⊥)
Sk(X) (otherwise)

Fig. 2. Combined algorithm for computing primary paths

2.3 Checking Color-Balancedness

The remaining step of the balancedness check is to confirm that each pair of
coupled parentheses in strings is of the same color, i.e., of the same base letter in
A. If so we call such strings color-balanced, or partially-balanced since they can
be defined as substrings of balanced strings. A string is balanced iff it is both
shape-balanced and color-balanced.

A color-balanced string φ is factorized as φ−iàiφi−1 · · · à1φ0b́1φ1 · · · b́jφj such
that φ−i, . . . , φj are balanced. Even an arbitrary string can be similarly factor-
ized by allowing φ−i, . . . , φj to be shape-balanced. According to this factorization,
we define

ρ(φ) = ài · · · à1b́1 · · · b́j

Next we define an ordering 
 on À∗Á∗ as the minimal one satisfying

φψ 
 φàáψ

for φ ∈ À∗ and ψ ∈ Á∗. We again extend this to a quasi-ordering φ 
 ψ ⇔
ρ(φ) 
 ρ(ψ). Note that φ 
 ψ implies c(φ) ≤ c(ψ). Now, the remaining part of
the algorithm is fairly simple.

Algorithm 2. (Balancedness Check) Assume that we already computed φX with
maximum c(φX) for each nonterminal of the given grammar G = (Σ, V,R, I).
We let φσ = σ. For each X ∈ V , we check the following:
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– φX is color-balanced.
– φX � φα, if X → α ∈ R.
– φαφβ is color-balanced and φX � φαφβ, if X → αβ ∈ R.

It is easy to see that a grammar with a balanced language satisfies these con-
ditions. This follows from the fact that under the balancedness, any φX with
maximum c(φX) bounds all strings generated from X also according to 
. The
other direction is shown by the following proposition; the success of Algorithm 2
implies the color-balancedness of the language of the grammar which, together
with the shape-balanced check, proves the balancedness of the language.

Proposition 2. If the check succeeds, X ∗⇒ φ implies (i) φ is color-balanced,
and (ii) φX � φ.

The proof is by induction on the length of the derivation of φ. The base case is
about terminal symbols and easy. For inductive step, assume that the proposition
holds for strings obtained by derivation whose height is not greater than k. Now
consider the derivation X

∗⇒ φ with its height k + 1. If X → αβ is used,
we have φ1φ2 = φ such that α ∗⇒ φ1 and β

∗⇒ φ2. Note that it is safe to
replace a substring ψ of a color-balanced string with another color-balanced
string ψ′ compatible to ψ. Formally, if (a) ψ′ and C[ψ] are color-balanced, and
(b) ψ � ψ′, we have (c) C[ψ′] color-balanced and (d) C[ψ] � C[ψ′]. Now we prove
the case as follows. By assumption, (a) φαφβ , φ1 and φ2 are color-balanced, we
also have (b) φα � φ1 and φβ � φ2. Hence (c) φ is color-balanced, and (d)
φX � φαφβ � φ1φβ � φ1φ2 = φ. The case X → α is easy.

2.4 SLP and CS Equivalence

Finally, we need to confirm that for strings given as SLPs, both the color-
balancedness and the check of φ 
 ψ are decidable in PTIME. Fortunately,
as noted in the introduction, we can use Plandowski’s algorithm deciding the
equivalence of two SLPs in PTIME.

First we give some definitions. Let φo be strings created from φ just by taking
letters in Á and removing ´ sign. Let φc be strings created from φ similarly for
À but in addition, by reversing the obtained string. For example, (àb̀ć)o = c and
(àb̀ć)c = ba. We use φ[j, k] to denote a substring of φ starting from its j-th letter
and ending before the k-th letter.

Proposition 3. Let cj = |ρ(φj)c|, oj = |ρ(φj)o|, and m = min(o1, c2).

(i) We have φ1φ2 color-balanced iff φ1 and φ2 are color-balanced, and

ρ(φ1)o[o1 −m, o1] = ρ(φ2)c[c2 −m, c2]

(ii) We have φ1 
 φ2 iff s = c2 − c1 = o2 − o1 ≥ 0, and

ρ(φ1)c = ρ(φ2)c[s, c2]
ρ(φ1)o = ρ(φ2)o[s, o2]
ρ(φ2)o[0, s] = ρ(φ2)c[0, s]
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Input: SLP (Σ,V,R, I)
Output: CS (A, V c � V o, R′, Ic or Io)

1 For a rule X → αβ ∈ R, we let o1 = c(φα)−d(φα), c2 = c(φβ), and m = min(c2, o1).

Xo → αo[0, o1 −m]βo

Xc → βc[0, c2 −m]αc

2 For a rule X → α, we just define

Xc → αc,Xo → αo

3 Finally for letters we define

ác = ào = ε, áo = àc = a,

Fig. 3. Translation of SLP for φX into CS for ρ(φX)

(iii) A composition system (CS) is an SLP which allows occurrences of nonter-
minals in the form X [j, k] in the rhs of productions. Given an SLP generating
φ, the translation in Fig. 3 gives CS such that Ic ∗⇒ ρ(φ)c and Io ∗⇒ ρ(φ)o.

It is known that the equivalence problem of two CSs also has a PTIME algorithm,
since a CS can always be converted back into a polynomial-size SLP [Hag00, Sch06].
We use this algorithm with the property (ii) to determine φ1 
 φ2. We also use
it with the property (i) to create a proof tree showing that each φX is (or is not)
color-balanced by checking, for each production Y → αβ needed in constructing
φX , that two CS, i.e., those using start symbols αo[o1 −m, o1] and βc[c2 −m, c2],
are equivalent.

Now the following theorem is immediate from Proposition 2 and 3.

Theorem 1. The balancedness problem is in PTIME.

3 2EXPTIME-Completeness of CFG-RHG Containment

We show that the CFG-RHG containment problem is 2EXPTIME-complete. In
our previous work, we developed a decision algorithm for the problem which has
doubly exponential time complexity [MT06]. Here we prove that this algorithm
is actually optimal by showing that the problem is 2EXPTIME-hard.

As noted in the introduction, we actually show the 2EXPTIME-hardness of
the CFG-PG containment problem. The result for the CFG-RHG containment
is immediately obtained by regarding PGs as RHGs. For this, we distinguish a
single pair of parenthesis [ and ]. We use an abbreviation a = áà and use A to
denote the set of strings in this form.

3.1 The Key Observation

Seidl [Sei90] showed that the containment between the languages of two nonde-
terministic tree automata (NTA) is EXPTIME-complete. In fact, NTA defines
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Fig. 4. A derivation tree and parse tree

the class of tree languages corresponding to languages of parse trees obtained
from string languages defined by PG. If the problem is PG-PG or RHG-RHG
containment, or even if the lhs of the containment is a balanced grammar such
that c(φX) = d(φX) = 0 for all X ∈ V , the complexity relaxes to EXPTIME. In
the case of NTA-containment, the size of the lhs is merely a polynomial factor.
On the other hand, in the CFG-PG containment problem, the primary factor
of the complexity is CFG on lhs. We here explain the high 2EXPTIME com-
plexity from the gap between a derivation tree and parse tree of each string in
the language of this CFG. Each node in a derivation tree corresponds to a non-
terminal, while each node in a parse tree corresponds to matched parentheses.
In the case of balanced grammars, two trees are not so different in the sense that
each matching parentheses also exist closely, i.e., as siblings, in a derivation tree.
This is generally not the case for a grammar just with a balanced language.

First note that for arbitrary k ∈ N and φ ∈ Σ∗, we can construct a CFG (SLP)
Ikφ of size O(log k) that accepts φk. For this, we define X0 → φ, Xi+1 → XiXi,
and Ikφ → Xi1 . . .Xin where i1, .., in-th bits are set in the binary encoding of k.
Now let � ∈ A and define a grammar G as

I → Ik[�X, X → Ik�] and X → [aXa] for a ∈ A

generating the following strings.

k
︷ ︸︸ ︷
[� · · · [�[a0[a1 · · ·

k
︷ ︸︸ ︷
�] · · ·�] · · · a1]a0]

See also a derivation tree for this grammar described as the left tree of Fig. 4.
In the figure, double-ended arrows between parentheses indicate matched
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Fig. 5. Simulation of a branch in ATM

parentheses. We can see that each matched parentheses exist in k-distant posi-
tions in the derivation tree. Hence, a parse tree of the language of this grammar
looks like the right tree of Fig. 4.

Now the procedure that decides L(G) ⊆ L(Gpg) can be considered as a proce-
dure which checks whether all parse trees above are contained in L(Gpg) as trees.
This PG compares the sequence a0 · · · ak−1 with ak · · ·a2k−1, ak · · · a2k−1 with
a2k · · ·a3k−1, and so on. The first idea for the hardness proof is to use this fact
to simulate a Turing machine (TM) using k-space. Let αi = aik · · · a(i+1)k−1 be
a configuration of TM. It is possible to construct a PG to check if each transition
from αi to αi+1 is a valid single computation step of the given TM.

Although this idea indeed works as we will later formally discuss, we need one
more trick to prove the 2EXPTIME-hardness. Note here that the size of G is
O(log k). This means that the above TM can only solve EXPSPACE problems.
To obtain the 2EXPTIME-hardness, we consider alternating Turing machines
(ATM). An ATM is a Turing machine with conjunctive transitions in the form
q � q1 ∧ q22. A computation of an ATM is thus a tree with branching degrees at
most 2, and each 2-degree branch corresponds to this ∧-transition. It is known
that the class of 2EXPTIME is identical to the problems solvable by ATM using
exponential space [CKS81].

The idea to simulate ATM is to add the following production rules to the
previous grammar.

X → Ik[�Y, Y → XX and Y → [aY a] for a ∈ A

A derivation tree of this grammar may look like the left tree of Fig. 5. We
simplify the figure by omitting most of [ and ], and we also group each length-k
2 In the literature, conjunctive transitions q � q1 ∧ q2 are often expressed by using
∀-states, which correspond to branches in the computation tree, of possibly more
than degree 2. It is easy to see that such an ATM using many-degreed branches can
be easily converted into an equivalent ATM using at most 2-degree branches.
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sequence of leaves aik, · · · , a(i+1)k−1 along the main branch as αi. Now, we at
some timing start to use Y instead of X in the main branch of the derivation, and
this branch by Y eventually ends with two branches of derivations by X . Now
the right tree of Fig. 5 explains how such derivation is parsed. In this figure, each
node corresponding to the derivation by Y is illustrated as twice as wide as nodes
for X . This reflects d(φY ) = 2k and d(φX) = k. This also means that the PG can
now simulate a machine with 2k-space here. We would like to use this machine
to duplicate the information of αi before the branch. Such a duplication can be
done by O(k)-computation steps, whose each step can be checked by constant
size PG. After successfully creating αiαi, we can simulate alternating transitions
αi to αi+1, and αi to α′i+1, by checking two child branches independently.

Using this idea, we will prove the following theorem in the next section.

Theorem 2. The CFG-PG containment problem is 2EXPTIME-hard.

3.2 Proof of 2EXPTIME-Hardness

Let P be a 2EXPTIME problem and M be an ATM solving this problem using
exponential space. This ATM M is a tuple (Q,Γ,�, q0,�, H) where

– Q is a set of states,
– Γ is a set of symbols,
– � ⊆ (Γ ×Q× {−1, 0, 1}× Γ ×Q) � (Q× {q ∧ q′ | q, q′ ∈ Q}) is a transition

relation,
– q0 is an initial state,
– � ∈ Γ is a blank symbol, and
– H is a set of accepting states.

A configuration of M is α = s0 · · · si−1s
q
i si+1 · · · ∈ Γ ∗(Γ × Q)Γω where sqi

indicates that the current state is q and the head is at i-th position. The com-
putation of M starts from α0 = xq00 x1 · · ·xn−1� · · · where x = x0 · · ·xn−1 is
an input. If |x| = n, the computation of M uses no more than k = 2p(n) space
for some polynomial p. A computation history of M is a finite tree T = (T, α)
associated with a function α ∈ T → Γ ∗(Γ × Q)Γω. This T is of branching de-
grees at most 2, so that the set of nodes T is given as a finite downward-closed
subset of {1, 2}∗ under lexicographic ordering on {1, 2}∗. For each node t ∈ T ,
α(t) represents the configuration at t. Each degree 2 branch in T corresponds
to alternating transitions q � q1 ∧ q2. If x ∈ P , we can find T whose all leaves
t satisfy sqi ∈ α(t) for some q ∈ H . Otherwise, any T has some leaves with
non-accepting states.

Given an input x = x0 · · ·xn−1, we can construct the following CFG G in
deterministic polynomial time and with its size polynomial to the input:

I → [#[xq00 · · · [xn−1I
k−n
[� X

X → [aXa] for a ∈ A′
X → [#Ik[�Y
X → #]Ik

�]

Y → [aY a] for a ∈ A
Y → XX
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where we let k = 2p(n), Q• = {•}�Q, A′ = {#}�Γ ×Q• = {#}�Γ �Γ ×Q,
A = {#}� (Γ ×Q• � {�})× {!}•. We add the symbol # to recognize bound-
aries of each configuration.

We would like to create a PG Gpg or equivalently NTAs such that any parse
tree in L(G) \ L(Gpg) corresponds to an accepting computation history in the
sense as explained in the last section. We model the parse tree as in Fig. 4 by
a tree U = (U, λ) associated with a labeling function λ ∈ U → A × A. Any
φ ∈ L(G) can be parsed as such U . This U also has branching degrees at most
2. Any NTA running on U can be efficiently converted into an equivalent PG
on φ.

First, we rule out ill-formed trees such that either # is not inserted appropri-
ately, or 2-degree branches occur at inappropriate positions. For this, we use NTA
N1 which accepts any tree U with u ∈ U such that either (i) λ(u) = (#, s), (s,#)
where s �= #, or (ii) λ(u) �= (#,#) and u is of branching degree 2.

Before simulating an alternation step of the ATM, we need to copy a config-
uration. By the production X → [#Ik[�Y , we prepare the copy and obtain the
configuration below.

# s0 s1 · · · sqi · · · sk−1 # � � · · · � #

At the first step, we place two markers denoted by ! at the two positions after
#, then repeatedly move two markers to the right and copy the contents.

# s0 s1 · · · sqi · · · sk−1 # � � · · · � #
# s!0 s1 · · · s

q
i · · · sk−1 # �! � · · · � #

# s!0 s1 · · · s
q
i · · · sk−1 # �! � · · · � #

# s0 s
!
1 · · · s

q
i · · · sk−1 # s0 �! · · · � #

...
# s0 s1 · · · sqi · · · s!k−1 # s0 s1 · · · �! #
# s0 s1 · · · sqi · · · sk−1 # s0 s1 · · · sk−1 #

This process is checked by an NTA N2, which checks each sequence of nodes
u0, . . . , un, . . . , um ∈ U such that (i) each ui+1 is the successor of ui, (ii) λ(ui) =
(#,#) iff i = 0, n,m, (iii) λ(ui) = (�, ) or (�!, ) for some n < i < m. Note
that any tree in L(G)\L(N1) contains such a sequence only when n = k+1 and
m = 2k+2. N2 accepts a tree which contains an incorrect copying sequence, e.g.,
λ(ui) = (s!, s), λ(uj) = (�!, s′) and s �= s′ for some i, j. This N2 also accepts a
tree if one of (i) λ(um−1) = (�!, ) and (ii) the node um is of branching degree
2, exclusively holds.

Finally, we construct an NTA N3 for checking the transitions of M . This
is similar to N2 except that we check a sequence u0, . . . un such that λ(u0) =
λ(un) = (#,#) without occurrence of ! and # on nodes u1 . . .un−1. This N3

accepts U whenever it finds a sequence u0, . . . , un such that u0 is of branching
degree 1, but the sequence is either (i) not obeying � when un is also of branching-
degree 1, or (ii) not containing accepting state, i.e., no ui such that λ(ui) =
(sq,�) for some q ∈ H , when un is a leaf. This N3 also accepts U whenever it
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finds u0 ∈ U of branching degree 2, followed by two sequences u0, u1, . . . , un and
u0, u

′
1, . . . , u

′
m, which does not have i and j such that (i) λ(ui′), λ(u′j′ ) are in the

form (s, s) if i′ �= i and j′ �= j, and (ii) λ(ui) = (sq, sq1) and λ(u′j) = (sq, sq2) for
some alternating transition q � q1 ∧ q2.

We obtain the parenthesis grammar Gpg from an NTA accepting the union of
L(N1), L(N2) and L(N3). The size of this Gpg is independent of x. Now for any
x, we construct G in deterministic polynomial time from x so that we have x ∈ P
iff ¬L(G) ⊆ L(Gpg). Hence the CFG-PG containment is 2EXPTIME-hard.

4 Related Work

In the same paper as the SLP equivalence [Pla94], Plandowski has also shown
the existence of a polynomial-size test set for given CFG G. A test set T ⊆ L(G)
is such that given two morphisms h, h′ ∈ Σ →M for a free group M , if h(φ) =
h′(φ) for all φ ∈ T then this holds for all φ ∈ L(G). He computed this T as a set
of SLPs. Hence if we can efficiently decide whether or not h(φ) = ε for all φ ∈ T ,
by letting h′(σ) = ε (= unit of M) for all σ ∈ Σ, we obtain the PTIME algorithm
to a problem similar to the balancedness problem which decides whether or not
h(L(G)) = {ε}. One difference here is that aa−1 = a−1a = ε holds in a free
group, while àá is irreducible in the balancedness problem. We are not sure if
we have another polynomial time algorithm for the balancedness problem in this
direction.

Meyer and Stockmeyer showed that the equivalence problem for regular ex-
pressions extended with squaring is EXPSPACE-hard and further investigated
the complexity of the problems for various variants of regular expressions
[MS72, SM73]. For tree languages, Seidl showed that the equivalence of non-
deterministic tree automata is EXPTIME-complete using an alternating Turing
Machine as our discussion [Sei90]. The proofs of these completeness results are
based on the hardness of the corresponding universality problems for languages
of the rhs of the containment. On the other hand, in our proof of 2EXPTIME-
completeness of CFG-RHG containment, a CFG in the lhs of the containment
is essential.
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Abstract. We introduce an extension of Hoare logic for call-by-value higher-
order functions with ML-like local reference generation. Local references may
be generated dynamically and exported outside their scope, may store higher-
order functions and may be used to construct complex mutable data structures.
This primitive is captured logically using a predicate asserting reachability of a
reference name from a possibly higher-order datum and quantifiers over hidden
references. The logic enjoys three completeness properties: relative complete-
ness, a logical characterisation of the contextual congruence and derivability of
characteristic formulae. The axioms for reachability and local invariants play a
fundamental role in reasoning about non-trivial programs combining higher-order
procedures and dynamically generated references.

1 Introduction

New reference generation, embodied for example in ML’s ref-construct, is a highly
expressive programming primitive. The key functionality of this construct is, firstly, to
induce local state by generating a fresh reference inaccessible from the outside. Con-
sider the following program:

Inc
def= let x = ref(0) in λ().(x :=!x + 1; !x) (1)

where “ref(M)” returns a fresh reference whose content is the value which M evalu-
ates to; “!x” means dereferencing the imperative variable x; and “;” is sequential com-
position. In (1), a reference with content 0 is newly created, but never exported to the
outside. When the anonymous function in Inc is invoked, it increments the content of
a local variable x, and returns the new content. The procedure returns a different re-
sult at each call, whose source is hidden from external observers. This is different from
λ().(x :=!x + 1; !x) where x is globally accessible.

Secondly, local references may be exported outside of their original scope and be
shared. Consider the following program from [25, § 6]:

incShared
def= a :=Inc;b :=!a;z1 :=(!a)();z2 :=(!b)();(!z1+!z2) (2)

This program returns 3. To understand the behaviour of incShared, we must capture
the sharing of x between the procedures assigned to a and b. The scope of x is originally
restricted to !a but gets extruded to !b. If we replace b :=!a by b := Inc, two separate

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 361–377, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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instances of Inc are assigned to a and b, and the final result is 2. Controlling sharing by
local reference is essential to writing concise algorithms that manipulate mutable data
structures, but complicates formal reasoning, even for relatively small programs [8, 18].

Thirdly, through information hiding, local references can be used for efficient imple-
mentation of highly regular observable behaviour. The following program, taken from
[25, § 1], called memFact, is a simple memoised factorial.

leta = ref(0) b = ref(1)in λx.if x =!a then !b else (a := x ; b := fact(x) ; !b)

Here fact is the standard factorial function. To external observers, memFact behaves
purely functionally. The program implements a simple case of memoisation: when
memFact is called with a stored argument in a, it immediately returns the stored value
!b without calculation. If x differs from what is stored at a, the factorial f x is calculated
and the new pair is stored. The reason why memFact is indistinguishable from the pure
factorial function can be understood through the following local invariant [25]:

Throughout all possible invocations of memFact, the content of b is the facto-
rial of the content of a.

Such local invariants capture one of the basic patterns in programming with local state,
and play a key role in preceding studies of operational reasoning about program equiv-
alence in the presence of local state [15, 23, 25, 30].

As a further example of local invariants, this time involving mutually recursive stored
functions, consider the following program:

mutualParity
def= x := λn.if n=0 then f else not((!y)(n−1));

y := λn.if n=0 then t else not((!x)(n−1))

After running mutualParity, the application (!x)n, returns true if n is odd, false
if not, and (!y)n acts dually. But since x and y are free, another program may prevent
mutualParity from functioning correctly by inappropriate assignment to x or y. With
local state, we can avoid unexpected interference at x and y.

safeOdd
def= let x = ref(λn.t) y = ref(λn.t) in (mutualParity; !x) (3)

safeEven
def= let x = ref(λn.t) y = ref(λn.t) in (mutualParity; !y) (4)

(Here λn.t can be any initialising value.) Now that x,y are inaccessible, the programs
behave like pure functions, e.g. safeOdd(3) always returns true without any side ef-
fects. In this case, the invariant says that throughout all possible invocations, !x is a pro-
cedure which checks if its argument is odd, provided y stores a procedure which does the
dual, whereas !y is a procedure which checks if its argument is even, whenever x stores a
dual procedure. Later we present general reasoning principles for local invariants which
can verify these two and many other non-trivial examples [14, 15, 18, 23, 25].

This paper studies a Hoare logic for imperative higher-order functions with dynamic
reference generation, a core part of ML-like languages. Our aim is to identify basic
logical primitives needed to capture precisely the semantics of local state, on the ba-
sis of a stratification of logics for sequential higher-order functions in our preceding
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works [2, 10, 12, 13]. For this purpose we introduce two new logical primitives, one for
reachability of references from an arbitrary datum and another for quantifying hidden
references (§ 2.2). This leads to a simple proof system for reference generation, which
can assert and derive desired properties for programs with significant use of local state
from the literature [14, 15, 18, 23, 25] (§ 2.4). The status of these new logical primi-
tives is clarified through soundness and three completeness results, including relative
completeness (§ 3). Basic axioms for reachability, hiding and local invariants are stud-
ied in § 4. The local invariance axioms capture a common pattern in reasoning about
local state, and enable us to verify the examples in [14, 15, 18, 23, 25], including pro-
grams discussed above (§5). Comparisons with related work are found in §6. Detailed
derivations, large examples and proofs are found in the full version [1].

2 Assertions for Local State

2.1 A Programming Language

Our target programming language is call-by-value PCF with unit, sums, products and
recursive types, augmented with imperative constructs. Let x,y, . . . range over an infinite
set of variables, and X,Y, . . . over an infinite set of type variables. Then types, values
and programs are given by:

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+ β | Ref(α) | X | µX.α

V,W ::= c | xα | λxα.M | µ f α⇒β.λyα.M | 〈V,W 〉 | injα+β
i (V )

M,N ::= V |MN | M := N | ref(M) | !M | op(M̃) | πi(M) | 〈M,N〉 | injα+β
i (M)

| if M then M1 else M2 | case M of {ini(x
αi
i ).Mi}i∈{1,2}

We use standard notation [22] like constants c (unit (), booleans t, f, numbers n and
locations l, l′, ...) and first-order operations op (+,−,×,=, ¬, ∧, . . .). Locations only
appear at runtime when references are generated. M̃ etc. denotes a vector and ε the
empty vector. A program is closed if it has no free variables. We freely use shorthands
like M;N, λ().M, and let x = M in N. Typing is standard: we take the equi-isomorphic
approach [22] for recursive types. Nat, Bool and Unit are base types. We leave illus-
tration of each construct to standard textbooks [22], except for reference generation
ref(M), the focus of the present study, which behaves as: first M of type α is evaluated
and becomes a value V ; then a fresh reference of type Ref(α) with initial content V is
generated. This behaviour is formalised by the following reduction rule:

(ref(V ), σ)−→ (ν l)(l, σ
 [l �→V ]) (l fresh)

Above σ is a store, a finite map from locations to closed values, denoting the initial
state, whereas σ
 [l �→V ] is the result of disjointly adding a pair (l,V ) to σ. The result-
ing configuration uses a ν-binder, which denotes l fresh. The general form (ν l̃)(M,σ)
means l̃ (a vector of distinct locations) occur in M and σ (the order is irrelevant). We
write (M,σ) for (ν ε)(M,σ). The one-step reduction−→ over configurations is defined
using standard rules [22] except for closure under ν-bindings. A basis Γ;Δ is a pair of
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finite maps, one from variables to non-reference types (Γ,Γ′, . . .), the other from loca-
tions and variables to reference types (Δ,Δ′, . . .). Θ,Θ′, ... combine two kinds of bases.
The typing rules are standard. Sequents have form Γ;Δ �M : α, to be read: M has type
α under Γ;Δ. We omit empty Γ or Δ . A store σ is typed under Δ, written Δ � σ, when,
for each l in its domain, σ(l) is a closed value which is typed α under Δ, where we
assume Δ(l) = Ref(α). A configuration (M,σ) is well-typed if for some Γ;Δ and α we
have Γ;Δ �M : α and Δ � σ. Standard type safety holds for well-typed configurations.
Henceforth we only consider well-typed programs and configurations.

2.2 A Logical Language

The logical language is based on standard first-order logic with equality [17, § 2.8].
It extends the logic [2] with two new primitives. The grammar follows, letting � ∈
{∧,∨,⊃}, Q ∈ {∃,∀,ν,ν} and Q′ ∈ {∃,∀}.

e ::= x | c | op(ẽ) | 〈e,e′〉 | πi(e) | inji(e) | !e
C ::= e=e′ | ¬C | C �C′ | Qxα.C | Q′X.C | {C}e• e′=x{C} | [!e]C | e ↪→ e′

The first grammar (e,e′, . . .) defines terms; the second formulae (A,B,C,E, . . .). Terms
include variables, constants c (unit (), numbers n, booleans t, f and locations l, l′, ...),
pairing, projection, injection and standard first-order operations. !e denotes the deref-
erence of a reference e. Formulae include standard logical connectives and first-order
quantifiers [17], and following [2, 12], quantification over type variables.

Introduced in [13], {C} e • e′ = x {C′} is the evaluation formula, which intuitively
says: If we apply a function e to an argument e′ starting from an initial state satisfying C,
then it terminates with a resulting value (name it x) and a final state together satisfying
C′. We shall also use a refined form of evaluation formulae, introduced in §2.3. [!e]C
is universal content quantification, introduced in [2] for treating aliasing. [!e]C (with
e of a reference type) says: Whatever value a program may store in a reference e, the
assertion C continues to be valid.

There are two new logical primitives. First, νx.C (for some hidden reference x, C
holds) and νx.C (for each hidden reference x, C holds) are hiding-quantifiers which
quantify over reference variables, i.e. x above is of the form Ref(β). They range over
hidden references, such as x generated by Inc in (1) in § 1. The need for adding these
quantifiers is illustrated in §4.1, Proposition 12. The second new primitive is e1 ↪→ e2

(with e2 of a reference type), which is the reachability predicate. It says: We can reach
the reference denoted by e2 from a datum denoted by e1. We then set its dual [6, 29] as
e#e′ ≡ ¬e′ ↪→ e, which says: One can never reach a reference e starting from a datum
denoted by e′. # is used for representing freshness of new references.

Convention. Logical connectives are used with standard precedence/association, using
parentheses as necessary to resolve ambiguities. We use truth T (definable as 1 = 1) and
falsity F (which is ¬T). x �= y stands for ¬(x = y). fv(C) (resp. fl(C)) denotes the set of
free variables (resp. locations) in C. Note that x in [!x]C occurs free, while in {C}e•e′=
x{C′} x occurs bound with scope C′. We often write [!x1..xn]C for [!x1]..[!xn]C. C1 ≡C2

stands for (C1 ⊃C2)∧ (C2 ⊃C1). We write ẽ#e for ∧iei #e; e# ẽ for ∧ie#ei; and ẽ# ẽ′

for ∧i jei #e′j. Terms are typed starting from variables. A formula is well-typed if all
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occurring terms are well-typed. Hereafter we assume all terms and formulae we use are
well-typed. Type annotations are often omitted.

2.3 Assertions for Local State

We explain assertions for programs with local state with examples.

1. The assertion x = 6 says x of type Nat is equal to 6. Assuming x has type Ref(Nat),
!x = 2 means x stores 2. Consider x := y;y := z;w := 1. After its run, we can reach
z by dereferencing y, and y by dereferencing x. Hence z is reachable from y, y from
x, hence z from x. So the final state satisfies x ↪→ y∧ y ↪→ z∧ x ↪→ z.

2. Next, assuming w is newly generated, we may wish to say w is unreachable from
x, to ensure freshness of w. For this we assert w#x, which, as noted, stands for
¬(x ↪→ w). x#y always implies x �= y. Note that x ↪→ x and x ↪→!x are tautologies
whereas x#x ≡ F. But !x ↪→ x may or may not hold (since there may be a cycle
between x’s content and x in the presence of recursive types).

3. We consider reachability in procedures. Assume λ().(x := 1) is named fw and
λ().!x, fr. Since fw can write to x, we have fw ↪→ x. Similarly fr ↪→ x. Next suppose
let x = ref(z) in λ().x has name fc and z’s type is Ref(Nat). Then fc ↪→ z (e.g.
consider !( fc()) := 1). However x is not reachable from λ().((λy.())(λ().x)) since
semantically it never touches x.

4. λ().(x :=!x + 1;!x) named u satisfies: ∀iNat.{!x = i}u • ()= z{!x = z∧!x = i + 1}
saying: invoking the function u increments the content of x and returns that content.

5. We often wish to say that the write effects of an application are restricted to spe-
cific locations. The located assertion introduced in [2] is used for this purpose:
{C}e • e′= x{C′}@ẽ where each ei is of a reference type and does not contain a

dereference. ẽ is called write set. As an example: inc(u,x) def= ∀i.{!x = i}u • ()=
z{z =!x = i + 1}@x is satisfied by λ().(x :=!x + 1;!x) named u, saying this func-
tion, when invoked, only touches x.

6. Assuming u denotes the result of evaluating Inc in the Introduction, we can assert,
using the existential hiding quantifier:

νx.(!x = 0 ∧ ∀iNat.{!x = i}u • ()=z{z =!x ∧ !x = i+ 1}@x) (5)

which says: there is a hidden reference x storing 0 such that whenever u is invoked,
it stores to x and returns the increment of the value in x at the time of invocation.

7. λnNat.ref(n), named u, meets the following specification. Let i,X be fresh.

∀nNat.∀X.∀iX.{T}u • n=z{νx.(!z = n ∧ z# i∧ z = x)}@ /0. (6)

This says that u, when applied to n, will return a hidden reference z whose content is
n and which is unreachable from any existing datum; and it has no writing effects to
the existing state. Since i ranges over arbitrary data, unreachability of x from each
such i indicates x is freshly generated and is not stored in any existing reference.
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2.4 Proof Rules

Following Hoare [7], a judgement consists of a program and a pair of formulae, but
augmented with a fresh name called an anchor [10, 12, 13].

{C}M :u {C′}

The judgement is about total correctness and reads: If we evaluate M in the initial state
satisfying C, then it terminates with a value named by u and a final state, which together
satisfy C′. The same sequent is used for both validity and provability. If we wish to be
specific, we prefix it with either � (for provability) or |= (for validity). Let Γ;Δ be the
minimum basis of M. In {C} M :u {C′}, the name u is the anchor of the judgement,
which should not be in dom(Γ,Δ)∪ fv(C); and C is the pre-condition and C′ is the post-
condition. The primary names are dom(Γ,Δ)∪{u}, while the auxiliary names (ranged
over by i, j,k, ...) are those free names in C and C′ which are not primary. An anchor is
used for naming the value from M and for specifying its behaviour.

The full compositional proof rules are given in Appendix A. Despite our semantic
enrichment, all compositional proof rules in [2] syntactically stay as they are, except
for adding the following rule for reference generation, with fresh i,X:

[Ref ]
{C}M :m {C′}

{C} ref(M) :u {νx.(C′[!u/m]∧u# iX∧u = x)}
In this rule, u# i indicates that the newly generated cell u is unreachable from any i of
arbitrary type X in the initial state: then the result of evaluating M is stored in that cell.

Reachability is a stateful property: for this reason it is generally not invariant under
state change. For example, suppose x is unreachable from y; after running y := x, x
becomes reachable from y. Hence a rule such as “if {C}M :m {C′}, then {C∧e#e′}M :m
{C′ ∧e#e′}” is unsound. However from the general invariance rule [Inv] from [2] below
(on the left), which uses the located form of judgement {C}M :u {C′}@ẽ (understood
as located evaluation formulae), we can derive an invariance rule for # , [Inv-#].

[Inv]
{C}M :m {C′}@w̃

{C∧ [!w̃]C0}M :m {C′ ∧C0}@w̃
[Inv-# ]

{C}M :m {C′}@x
no dereference occurs in ẽ
{C∧ x# ẽ}M :m {C′ ∧ x# ẽ}@x

In [Inv], unlike the existing invariance rules as found in [28], we need no side con-
dition “M does not modify stores mentioned in C0”: C and C0 may even overlap in
their mentioned references, and C does not have to mention all references M may read
or write. For [Inv-# ], we note [!x]x# ẽ ≡ x# ẽ is always valid if ẽ contains no deref-
erence !e, cf. Proposition 7 3-(5) later. The side condition is indispensable: consider
{T}x := x{T}@x, which does not imply {x#!x}x := x{x#!x}@x.

3 Models, Soundness and Completeness

3.1 Models

We introduce the semantics of the logic based on term models. For capturing local state,
models incorporatehidden locationsusingν-binders [20].Forexample, the Introduction’s
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Inc, named u, is modelled as: (νl)({u : λ().(l :=!l + 1; !l)},{l �→ 0}), which says that
the appropriate behaviour at is at u, in addition to a hidden reference l storing 0.

Definition 1. An open model of type Θ = Γ;Δ, with fv(Δ) = /0, is a tuple (ξ,σ) where:

– ξ, called environment, is a finite map from dom(Θ) to closed values such that, for
each x ∈ dom(Γ), ξ(x) is typed as Θ(x) under Δ, i.e. Δ � ξ(x) : Θ(x).

– σ, called store, is a finite map from labels to closed values such that for each l ∈
dom(σ), if Δ(l) has type Ref(α), then σ(l) has type α under Δ, i.e. Δ � σ(l) : α.

When Θ includes free type variables, ξ maps them to closed types, with the obvious
corresponding typing constraints. A model of type (Γ;Δ) is a structure (νl̃)(ξ,σ) with
(ξ,σ) being an open model of type Γ;Δ ·Δ′ with dom(Δ′) = {l̃}. (νl̃) act as binders.
M,M′, . . . range over models.

An open model maps variables and locations to closed values: a model then specifies
part of the locations as “hidden”. Since assertions in the present logic are
intended to capture observable program behaviour, the semantics of the logic uses
models quotiented by an observationally sound equivalence. Below (νl̃)(M,σ) ⇓means
(νl̃)(M,σ)−→n (νl̃′)(V,σ′) for some n.

Definition 2. Assume Mi
def= (νl̃i)(x̃ : Ṽi,σi) typable under Γ;Δ. Then we write M1≈M2

if the following clause holds for each closing typed context C[ · ] which is typable under
Δ and in which no labels from l̃1,2 occur: (νl̃1)(C[〈Ṽ1〉],σ1) ⇓ iff (νl̃2)(C[〈Ṽ2〉],σ2) ⇓
where 〈Ṽ 〉 is the n-fold pairings of a vector of values.

3.2 Semantics of Reachability and Hiding

Let σ be a store and S ⊂ dom(σ). Then the label closure of S in σ, written lc(S,σ), is
the minimum set S′ of locations such that: (1) S⊂ S′ and (2) If l ∈ S′ then fl(σ(l))⊂ S′.

Lemma 3. For all σ, we have:

1. S ⊂ lc(S,σ); S1 ⊂ S2 implies lc(S1,σ)⊂ lc(S2,σ); and lc(S,σ) = lc(lc(S,σ),σ)
2. lc(S1,σ)∪ lc(S2,σ) = lc(S1∪S2,σ)
3. S1 ⊂ lc(S2,σ) and S2 ⊂ lc(S3,σ), then S1 ⊂ lc(S3,σ)
4. there exists σ′ ⊂ σ such that lc(S,σ) = fl(σ′) = dom(σ′).

(1,2) are direct from the definition, and (3,4) follow from (1,2). Now set Γ;Δ � e : α,
Γ;Δ �M and M = (ξ,σ). The interpretation of e under M, denoted [[e]]ξ,σ is given by:

[[x]]ξ,σ = ξ(x) [[!e]]ξ,σ = σ([[e]]ξ,σ) [[c]]ξ,σ = c [[op(ẽ)]]ξ,σ = op([[ẽ]]ξ,σ)

[[〈e,e′〉]]ξ,σ = 〈[[e]]ξ,σ, [[e′]]ξ,σ〉 [[πi(e)]]ξ,σ = πi([[e]]ξ,σ) [[inji(e)]]ξ,σ = inji([[e]]ξ,σ)

We now set the satisfaction of the reachability which says that the set of hereditarily
reachable names from e1 includes e2 up to ≈.

M |= e1 ↪→ e2 if [[e2]]ξ,σ ∈ lc(fl([[e1]]ξ,σ),σ) for each (νl̃)(ξ,σ)≈M

For the programs in § 2.3 (3), we can check fw ↪→ x, fr ↪→ x and fc ↪→ z hold under
fw : λ().(x := 1), fr : λ().!x, fc : let x = ref(z) in λ().x (regardless of the store part).
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The following characterisation of # is often useful for justifying axioms. Below σ =
σ1
σ2 indicates that σ is the union of σ1 and σ2, assuming dom(σ1)∩dom(σ2) = /0.

Proposition 4 (partition). M |= x#u iff for some l̃, V , l and σ1,2, we have M≈ (νl̃)(ξ ·
u : V · x : l, σ1
σ2) such that lc(fl(V ),σ1
σ2) = fl(σ1) = dom(σ1) and l ∈ dom(σ2).

The characterisation says that if x is unreachable from u then, up to ≈, the store can be
partitioned into one covering all reachable names from u and another containing x.

The existential hiding-quantifier has the following semantics.

M |= νx.C if ∃M′.((νl)M′ ≈M ∧ M′[x : l] |= C)

where l is fresh, i.e. l �∈ fl(M) where fl(M) denotes free labels in M. The notation
(νl)M′ denotes addition of the hiding of l to M′, as well as indicating that l occurs free
in M′. M[x : l] adds x : l to the environment part of M. This says that x denotes a hidden
reference, say l, and the result of taking it off from M satisfies C. νx.C is defined dually.

As an example of satisfaction, let: M
def= (νl)({u : λ().(l :=!l +1;!l)}, {l �→ 0}) then we

have M |= νx.C with C = (!x = 0 ∧ ∀iNat.{!x = i}u• () = z{z =!x ∧ !x = i+1}) using

the above definition. To see this, let M′
def= ({u : λ().(l :=!l + 1;!l)}, {l �→ 0}) then we

surely have (νl)M′ = M and M′[x : l] |= C. Here M represents a situation where l is
hidden and u denotes a function which increments and returns the content of l; whereas
M′ is the result of taking off this hiding, exposing the originally local state.

3.3 Soundness and Completeness

The definition of satisfiability M |= C for the remaining formulae is given in [1]. where
logical connectives are interpreted classically and type variables are treated syntacti-
cally [12]. Let M be a model (νl̃)(ξ,σ) of type Γ;Δ, and Γ;Δ �M : α with u fresh.

Then validity |= {C}M :u {C′} is given by ∀M.(M |= C ⊃ (M[u :M] ⇓M′ ∧ M′ |=
C′) with M including all variables in M, C and C′ except u, where we write M[u:N]⇓M′

when (Nξ,σ) ⇓ (νl̃′)(V,σ′) and M′ = (νl̃ l̃′)(ξ ·u :V, σ′).

Theorem 5 (soundness). � {C}M :u {C′} implies |= {C}M :u {C′}.

We next discuss the completeness properties of the logic. A strong completeness prop-
erty is descriptive completeness studied in [11], which is provability of a characteris-
tic assertion for each program (i.e. assertions characterising programs’ behaviour). In
[11], we have shown that, for our base logic, this property directly leads to two other
completeness properties, relative completeness (which says that provability and valid-
ity of judgements coincide) and observational completeness (which says that validity
precisely characterises the standard contextual equivalence).

The proof of descriptive completeness closely follows [11]. Relative and observa-
tional completeness are its direct consequences. Descriptive completeness is established
for a refinement of the present logic where evaluation formulae and content quantifica-
tion are decomposed into fine-grained operators [1]. For the space sake, we only state
observational completeness, which we regard as a basic semantic property of the logic.

Write ∼= for the standard contextual congruence for programs [22]; further write
M1
∼=L M2 to mean (|= {C}M1 :u {C′} iff |= {C}M2 :u {C′}). We have:
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Theorem 6 (observational completeness). For each Γ;Δ �Mi : α (i = 1,2), we have
M1 ∼=L M2 iff M1 ∼= M2.

4 Axioms for Reachability, Hiding and Local Invariant

4.1 Basic Axioms for Reachability and Hiding

We start from the axioms for reachability. Note that our types include recursive types.

Proposition 7 (axioms for reachability). The following assertions are valid.

1. (1) x ↪→ x; (2) x ↪→ y∧ y ↪→ z ⊃ x ↪→ z;
2. (1) y#xα with α∈ {Unit,Nat,Bool}; (2) x#y ⇒ x �= y; (3) x#w∧w ↪→ u ⊃ x#u.
3. (1) 〈x1,x2〉 ↪→ y ≡ x1 ↪→ y∨x2 ↪→ y; (2) inji(x) ↪→ y ≡ x ↪→ y; (3) x ↪→ yRef(α) ⊃

x ↪→!y; (4) xRef(α) ↪→ y∧ x �= y ⊃ !x ↪→ y; (5) [!x]x#y ≡ x#y.

The proofs use Lemma 3. 3-(5) says that altering the content of x does not affect reach-
ability to x. Note [!x]y#x≡ y#x is not valid at all. 3-(5) was already used for deriving
[Inv-# ] in §2.4 (we cannot substitute !x for y in [!x]x#y to avoid name capture).

Let us say α is finite if it does not contains an arrow type or a type variable. We say
e ↪→ e′ is finite if e has a finite type. Then by Proposition 7 2-(1) and 3:

Theorem 8 (elimination). Suppose all reachability predicates in C are finite. Then
there exists C′ such that C ≡C′ and no reachability predicate occurs in C′.

A straightforward coinductive extension of the above axioms gives a complete axioma-
tisation with recursive types [1], but not function types. For analysing reachability, we
define the following “one-step” reachability predicate. Below e2 is of a reference type.

M |= e1 � e2 if [[e2]]ξ,σ ∈ fl([[e1]]ξ,σ) for each (νl̃)(ξ,σ)≈M (7)

We can show (νl̃)(ξ,σ) |= x � l′ is equivalent to l′ ∈ ⋂{fl(V ) | V ∼= ξ(x)}, (the latter
says that l′ is in the support [6, 24, 30] of f ). We set: x �1 y ≡ x � y; x �n+1 y ≡
∃z.(x � z ∧ !z�n y) (n≥ 1). We also set x �0 y ≡ x = y. By definition:

Proposition 9. x ↪→ y ≡ ∃n.(x �n y)≡ (x = y ∨ x � y ∨ ∃z.(x � z∧ z �= y∧ z ↪→ y)).

Proposition 9, combined with Theorem 8, suggests that if we can clarify one-step reach-
ability at function types then we will be able to clarify the reachability relation as a
whole. Unfortunately this relation is inherently intractable.

Proposition 10. (1) M |= f α⇒β �x is undecidable. (2) M |= f α⇒β ↪→ x is undecidable.

The same result holds for call-by-value βη-equality. The result also implies that the
validity of ∀x f .(A⊃ f � x) is undecidable, since we can represent any PCFv-term as a
formula using the method [11]. However Proposition 10 does not imply that we cannot
obtain useful axioms for (un)reachability for function types. We discuss a collection of
basic axioms in the following.
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Proposition 11. For an arbitraryC, the following is valid with i,Xfresh:{C∧x# f yw̃} f•
y=z{C′}@w̃ ⊃ ∀X, iX.{C∧ x# f iyw̃} f •y=z{C′ ∧ x# f iyzw̃}@w̃.

The above axiom says that if x is unreachable from f , y and w̃, then the application of
f to y with the write set w̃ never exports x. Next we list basic axioms for hiding.

Proposition 12. (1) C ⊃ νx.C if x �∈ fv(C); νx.C ≡ C if x �∈ fv(C) and no evaluation
formula occurs in C; (2) νx.(C ∧ u = x) ≡ C ∧ νx.u = x where x �∈ fv(C); and (3)
νx.(C1∨C2)≡ (νx.C1)∨ (νx.C2); νx.(C1∧C2)⊃ (νx.C1)∧ (νx.C2)

For (1), it is notable that we do not generally have C ⊃ νx.C. Neither νx.C ⊃ C with
x �∈ fv(C) holds generally, see [1]. This shows that integrating these quantifiers into the
standard ∀ and ∃-quantifiers let the latter lose their standard axioms, motivating the
introduction of ν-operator. (2,3) list some of useful axioms for moving the scope of x.

4.2 Local Invariant

We now introduce an axiom for local invariants. Let us first consider a function which
writes to a local reference of a base type. Even programs of this kind pose fundamental
difficulties in reasoning, as shown in [18]. Take the following program:

compHide
def= let x = ref(7) in λy.(y>!x) (8)

The program behaves as a pure function λy.(y> 7). Clearly, the obvious local invariant
!x = 7 is preserved. We demand this assertion to hold under arbitrary invocations of
compHide: thus (naming the function u) we arrive at the following invariant:

C0 = !x = 7 ∧ ∀y.{!x = 7}u • y = z{!x = 7}@ /0 (9)

Assertion (9) says: (1) the invariant !x = 7 holds now; and that (2) once the invariant
holds, it continues to hold for ever (note x can never be exported due to the type of y
and z, so that only u will touch x). compHide is easily given the following judgement:

{T}compHide :u {νx.(x# iX ∧ C0 ∧ C1)} (i fresh) (10)

with C1 = ∀y.{!x = 7}u • y = z{z = (y > 7)}@ /0. Thus, noting C0 is only about the
content of x, we conclude C0 continues to hold automatically. Hence we cancel C0

together with x:

{T}compHide :u {∀y.{T}u • y = z{z = (y> 7)}} (11)

which describes a purely functional behaviour. Below we stipulate the underlying rea-
soning principle as an axiom. Let y,z be fresh. For simplicity of presentation, we assume
y has a base type.1

Inv(u,C0, x̃) = C0 ∧ (∀yi.{C0}u • y=z{T}⊃ ∀yi.{C0}u • y=z{C0 ∧ x̃#z}) (12)

where we assume C0 ⊃ x̃# i. Inv(u,C0,x) says that, first, currently C0 holds; and that
second if C0 holds, then applying u to y results in, if it ever converges, C0 again and the
returned z is disjoint from x̃. Below we say C is stateless if M |= C and M[u : N] ⇓M′

imply M′ |= C (its syntactical characterisation can be found in Appendix A).

1 That is sufficient for all examples in this paper: The refinement allows arbitrary types [1].
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Proposition 13 (axiom for information hiding). Assume C0⊃ x̃# i and [!x̃]C0 is state-
less. Suppose i,m are fresh, {x̃, g̃}∩ (fv(C,C′)∪{w̃}) = /0 and y has a base type. Let
E1 = Inv(u,C0, x̃)∧∀yi.{C0∧[!x̃]C}u•y=z{C′}@w̃x̃ and E2 = ∀y.{C}u•y=z{C′}@w̃.
Then the following assertion is valid.

(AIH) {E}m• ()=u{νx̃.∃g̃.(E1∧E ′)} ⊃ {E}m• ()=u{E2∧E ′}

(AIH) is used with the consequence rule (Appendix A) to simplify from E1 to E2. Its
validity is proved using Proposition 4. The axiom says: if a function u with a fresh
reference xi is generated, and if it has a local invariant C0 on the content of xi, then
we can cancel C0 together with xi. The statelessness of [!x̃]C0 ensures that satisfiability
of C0 is not affected by state change except at x̃; and [!x̃]C says that whether C holds
does not depend on x̃. Finally ∃g̃ in E1 allows the invariant to contain free variables,
extending applicability as we shall use in §5 for safeEven.

Coming back to compHide, we take C0 to be !x = 7∧ x# i, w̃ empty, both C and E ′

to be T and C′ to be z = (y > 7) in (AIH), to reach the desired assertion. [1] lists the
axioms of the higher-order version of Proposition 11 and apply to the examples in [18].

5 Reasoning Examples

5.1 Shared Stored Function

This section presents concrete reasoning examples. We show the key ideas; the detailed
derivations can be found in [1]. We first present a simple example of hiding-quantifiers
and unreachability using incShared in (2) from § 1. We use a derived rule for the
combination of “let” and new reference generation.

[LetRef]
{C}M :m {C0} {C0[!x/m]∧ x# ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}

where fpn(e) denotes the set of free plain names of e which are reference names in e that
do not occur dereferenced, defined as: fpn(x) = {x}, fpn(c)= fpn(!e) = /0, fpn(〈e,e′〉)=
fpn(e)∪ fpn(e′), and fpn(πi(e)) = fpn(inji(e)) = fpn(e). We also restrict C′ above to a
thin formula given in Appendix A (this does not limit the usability of this rule, at least
for the reasoning examples we shall treat). The notation x# ẽ appeared in § 2.3. The
rule reads: Assume (1) M with pre-condition C leads to post-condition C0, with the
resulting value named m; and (2) running N from C0 with m as the content of x together
with the assumption x is unreachable from each ei, leads to C′ with the resulting value
named u. Then running let x = Ref(M) in N from C leads to C′ whose x is fresh
and hidden. The side condition x �∈ fpn(ei) is essential for consistency (e.g. without it,
we could assume x#x, i.e. F). The rule directly gives a proof rule for new reference
declaration [18, 23, 28], new x := M in N, which has the same operational behaviour as
let x = ref(M) in N. Note also that the original Hoare and Wirth [9]’s rule for local
variable declaration is a special case of this rule.

Let inc(x,u,n) = ∀ j.{!x = j}u • ()= j + 1{!x = j + 1}@x∧!x = n and inc′(n,m) =
inc(!a,x,n)∧ inc(!b,y,m)∧x �= y. The left derivation is for incShared, while that on the
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right is for a program where “b :=!a” has been replaced by “b := Inc” in incShared.
We assume and use pairwise distinctness of a,b,z1,z2, and omit anchors of unit type.

1.{T} a := Inc {νx.inc(!a,x,0)}

2.{inc(!a,x,0)} b :=!a {inc(!a,x,0)∧ inc(!b,x,0)}

3.{inc(!a,x,0)} z1 := (!a)() {inc(!a,x,1)∧!z1 = 1}

4.{inc(!b,x,1)} z2 := (!b)() {inc(!b,x,2)∧!z2 = 2}

5.{!z1 = 1∧!z2 = 2} (!z1)+(!z2) :u {u = 3}

{T} a := Inc {νx.inc(!a,x,0)}

{inc(!a,x,0)} b := Inc {νy.inc′(0,0)}

{inc′(0,0)} z1 := .. {inc′(1,0)∧!z1 = 1}

{inc′(1,0)} z2 := .. {inc′(1,1)∧!z2 = 1}

{!z1 = 1∧!z2 = 1} (!z1)+(!z2) :u {u = 2}

Line 1 uses [LetRef]. In Line 2 on the left, x is automatically shared after “b :=!a”
which leads to scope extrusion, while in the right, x �= y in inc′(0,0) is ensured by the
ν-binding operator.

Memoised Factorial [25] (from memFact in § 1). Our target assertion specifies the
behaviour of a pure factorial. The following inference starts from the let-body of
memFact, which we name V . We set: E1a = C0 ∧ ∀xi.{C0}u • x=y{C0∧ab#y}@ab,
and E1b = ∀xi.{C0 ∧C}u • x = y{C′}@ab where we set C0 to be ab# i ∧ !b=(!a)!!!, C
to be T, and C′ to be y = x!!!. Note that [!ab]C0 is stateless by Prop. 7 5; and that, by the
type of y being Nat and Prop. 7 2-(1), we have ab#y≡ T. We can now reason:

1.{T}V :u {∀xi.{C0}u•x=y{C0 ∧ C′}}@ /0

2.{ab# i} V :u {E1a ∧ E1b} (1, Conseq, Inv-#)

3.{T} memFact :u {νab.(E1a∧E1b)} (2, LetRef)

4.{T} memFact :u {∀x.{T}u•x = y{y = x!!!}@ /0.} (3,(AIH),Conseq)

Line 2 uses the axiom {C} f • x=y{C1∧C2}@w̃⊃ ∧i=1,2{C} f • x = y{Ci}@w̃.

5.2 Mutually Recursive Stored Functions

(from (3) in § 1). We first verify [1]:

{T}mutualParity :u {∃gh.IsOddEven(gh, !x!y,xy,n)} (13)

where, with Even(n)≡ ∃x.(n=2× x) and Odd(n)≡ Even(n+1):
IsOddEven(gh,wu,xy,n) = (IsOdd(w,gh,n,xy) ∧ IsEven(u,gh,n,xy) ∧ !x = g ∧ !y = h)
IsOdd(u,gh,n,xy) = ∀n.{!x = g ∧ !y = h}u•n=z{z = Odd(n) ∧ !x = g ∧ !y = h}@xy

where IsOdd(u,gh,n,xy) says that x stores a procedure which checks if its argument
is odd if y stores a procedure which does the dual, and x does store the behaviour.
IsEven(u,gh,n,xy) is defined dually. Our aim is to derive the following judgement for
safeOdd starting from (13) (the case for safeEven is symmetric).

{T}safeOdd :u {∀n.{T}u • n=z{z = Odd(n)}@ /0} (14)

We first identify the local invariant: C0 = !x = g ∧ !y = h ∧ IsEven(h,gh,n,xy) ∧
xy# i j. Since C0 only talks about g, h and the content of x and y, we know [!xy]C0 is
stateless. We now observe IsOddEven(gh, !x!y,xy,n) is the conjunction of:
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Odda = C0 ∧ ∀n.{C0}u • n=z{C0}@xy Oddb = ∀n.{C0}u • n=z{z=Odd(n)}@xy

As Line 3 in memFact, we can apply (AIH) to obtain (14).

Higher-Order Invariant [30, p.104]. We move to a program whose invariant be-
haviour depends on another function. The program instruments an original program
with a simple profiling (counting the number of invocations), with α a base type.

profile
def= let x = ref(0) in λyα.(x :=!x + 1; f y)

Since x is never exposed, this program should behave precisely as f . We shall derive:

{∀y.{C} f • y = z{C′}@w̃} profile :u {∀y.{C}u • y = z{C′}@w̃} (15)

with x �∈ fv(C,C′) (by the bound name condition). This judgement says: if f satisfies the
specification E = ∀y.{C} f • y = z{C′}@w̃, then profile satisfies the same specifica-
tion E . Note C and C′ are arbitrary. To derive (15), we first set C0, the invariant, to be
x# f iw̃. As with the previous derivations, we use two subderivations. First, by the axiom
in Proposition 11, we can derive:

{T}λy.(x :=!x + 1; f y) :u {∀yi.{C0}u • y = z{C0∧ x#z}@xw̃} (16)

Secondly, again by Prop. 11 we obtain E ⊃ ∀y.{C ∧ x# f w̃} f • y = z{x#zw̃}@w̃. By
this, E being stateless, Prop.7 3-(5) and [Inv-# ], we obtain:

{E}λy.(x :=!x + 1; f y) :u {∀yi.{C0∧ [!x]C}u • y = z{C′ ∧ x#z}@xw̃}. (17)

By combining (16) and (17), we can use (AIH), hence done.

6 Related Work and Future Topics

For the sake of space, detailed comparisons with existing program logics and reasoning
methods, in particular with Clarke’s impossibility result, Caires-Cardelli’s spatial logic,
recent mechanisations of reachability predicates [16], as well as other logics such as
LCF, Dynamic logic, higher-order logic, specification logic, Larch/ML, and Extended
ML are left to the long version [1] and our past papers [2, 10, 12, 13]. Below we focus
on work that treats locality and recent work on Hoare logics.

Reasoning Principles for Functions with Local State. There is a long tradition of
studying equivalences over higher-order programs with local state. Meyer and Sieber
[18] present examples and reasoning principles based on denotational semantics. Ma-
son, Talcott and others [14] investigate equational axioms for an untyped version of the
language treated in the present paper, including local invariance. Pitts and Stark [23, 25,
30] present powerful operational reasoning principles for the same ML-fragment con-
sidered here, including reasoning principle for local invariance at higher-order types
[25]. Our axioms for information hiding in § 4, which capture a basic pattern of pro-
gramming with local state, are closely related with these reasoning principles. Our logic
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differs in that its aim is to offer a method for describing and validating properties of pro-
grams beyond program equivalence. Equational and logical approaches are complimen-
tary: Theorem 6 offers a basis for integration. For example, we may consider deriving
a property of the optimised version M′ of M: if we can easily verify {C}M :u {C′} and
if we know M ∼= M′, we can conclude {C}M′ :u {C′}, which is useful if M is better
structured than M′.

Program Logics for Aliasing and Higher-Order Functions. Reynolds et al. [28]
present a program logic for aliasing where fresh data generation is represented by a
special conjunction denoting spatial disjointness from the original datum. Their method
can reason many programs with aliasing. The logic studied in the present paper captures
freshness through generic unreachability from arbitrary data in the initial state. Apart
from completeness properties discussed in §3.3, the approach enables uniform treat-
ment of known data types, including product, sum, reference, closure, etc. Reasoning
examples using the present method include those in the present paper as well as higher-
order invariants from [18], objects from [15], circular lists from [16], tree-, dag- and
graph-copy from [5], as presented in [1, § 6]. Birkedal et al. [4] present a typing sys-
tem for a variant of Idealised Algol where types are constructed from formulae of the
logic in [28]. Their typing system uses subtyping calculated via categorical semantics,
the focus of their study. [3] extends the logic in [28] with higher-order frame rules, and
demonstrates reasoning about priority queues. Both works consider neither exportable
fresh reference generation nor higher-order procedures in full generality. In particular,
it would be difficult to validate the examples in § 5.

Nanevski et al [21] studies Hoare Type Theory (HTT) which combines dependent
types and Hoare triples with anchors based on monadic understanding of computa-
tion. HTT aims to provide an effective general framework which unifies standard static
checking techniques and logical verifications. Local store is not treated and left as an
open problem in [21]. Reus and Streicher [27] present a Hoare logic for a simple lan-
guage with higher-order stored procedures, extended in [26]. Soundness is proved with
denotational methods. Completeness is not considered in [26, 27]. Their assertions con-
tain quoted programs, which is necessary to handle recursion via stored functions. Their
language does not allow procedure parameters and general reference creation.

The logic studied in the present work aims to capture the behaviour of sequential
higher-order programs with local state in the framework of compositional program log-
ics à la Hoare, stratified on the basis of simpler program logics [2, 10, 12, 13]. The
semantic precision of the logic (cf. Theorem 6), axiomatisation of local invariance, and
uniform extensibility to diverse data types are among those features not found in the
preceding program logics mentioned above.

Meta-Logical Study on Freshness. Freshness of names has recently been studied
from the viewpoint of formalising binding relations in programming languages and
computational calculi. Pitts and Gabbay [6, 24] extend first-order logic with constructs
to reason about freshness of names based on permutations. The key syntactic additions
are the (interdefinable) “fresh” quantifier Nand the freshness predicate #, mediated
by a swapping (finite permutation) predicate. Miller and Tiu [19] are motivated by the
significance of generic (or eigen-) variables and quantifiers at the level of both formulae
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and sequents, and split universal quantification in two, introduce a self-dual freshness
quantifier ∇ and develop the corresponding sequent calculus of Generic Judgements.
While these logics are not program logics, their logical machinery may be usable in
the present context. As noted in Proposition 9, reasoning about ↪→ or # is tantamount
to reasoning about �, which denotes the support (i.e. semantically free locations) of
a datum. A characterisation of support by the swapping operation may be interesting
from the viewpoint of axiomatisation of reachability.
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A Appendix: Proof Rules

The following presents compositional proof rules. We omit the rules for the sum and
products. The rule for the reference can be found in the main section.

[Var] −
{C[x/u]} x :u {C} [Const] −

{C[c/u]} c :u {C} [Succ] {C}M :m {C′[m+1/u]}
{C}Succ(M) :u {C′}

[Abs] {C∧A-xĩ}M :m {C′}
{A} λx.M :u {∀xĩ.{C}u• x= m{C′}} [App]

{C}M :m {C0}
{C0} N :n { C1∧{C1} m•n = u {C′}}

{C}MN :u {C′}

[If ] {C}M :b {C0} {C0[t/b]}M1 :u {C′} {C0[f/b]}M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[Deref ] {C}M :m {C′[!m/u]}
{C} !M :u {C′}

[Assign] {C}M :m {C0} {C0} N :n {C′{|n/ !m|}}
{C} M := N {C′}

[Rec] {A
-xi∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}

{A} µx.λy.M :u {∀i.B(i)}

[Cons-Eval]
{C0}M :m {C′0} ∀ĩ.{C0}x• ()=m{C′0} ⊃ ∀ĩ.{C}x• ()=m{C′} x fresh, ĩ auxiliary

{C}M :m {C′}

We assume that judgements are well-typed in the sense that, in {C} M :u {C′} with
Γ;Δ �M : α, Γ,Δ,Θ �C and u :α,Γ,Δ,Θ �C′ for some Θ s.t. dom(Θ)∩ (dom(Γ,Δ)∪
{u}) = /0. In the rules, C-x̃ indicates fv(C)∩{x̃}= /0. Symbols i, j, . . . range over auxil-
iary names. We demand the postconditions of the proof rules [App, If] to be thin, where
we say C is thin iff for each M and for each y∈ fv(M)\fv(C), M |= C implies M/y |= C
(a syntactic characterisation of thinness is discussed in [1]).

In [Abs, Rec], A,B denote stateless formulae given in §4.2.Syntactically C is state-
less when: (1) each dereference !y only occurs either in pre/post conditions of evalua-
tion formulae or under [!y]; (2) (un)reachability predicates occur in pre/post conditions
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of evaluation formulae; and (3) evaluation formulae and content quantifications never
occur negatively (using the standard notion of negative/positive occurrences).

[Assign] uses logical substitution C{|e2/!e1|} which is built with content quantifica-
tion to represent substitution of content of a possibly aliased reference [2]. This is de-

fined as: C{|e2/!e1|} def= ∀m.(m = e2 ⊃ [!e1](!e1 = m⊃C)). with m fresh. Intuitively
C{|e2/!e1|} describes the situation where a model satisfying C is updated at a memory
cell referred to by e1 (of a reference type) with a value e2 (of its content type), with e1,2

interpreted in the current model. [Cons-Eval] is a strengthened version of the standard
consequence rule [Conseq].

The proof rules for the located judgement is given just as [2], adding the following
rule for the reference, with i, X fresh.

[Ref]
{C}M :m {C′}@ẽ x /∈ fpn(ẽ)∪ fv(ẽ)

{C} ref(M) :u {νx.(u# iX ∧u = x∧C′)}@ẽ
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